Spaces:
Running
Running
''' | |
Warning: metrics are for reference only, may have limited significance | |
''' | |
import os | |
import sys | |
sys.path.append(os.getcwd()) | |
import numpy as np | |
import torch | |
from data_utils.lower_body import rearrange, symmetry | |
import torch.nn.functional as F | |
def data_driven_baselines(gt_kps): | |
''' | |
gt_kps: T, D | |
''' | |
gt_velocity = np.abs(gt_kps[1:] - gt_kps[:-1]) | |
mean= np.mean(gt_velocity, axis=0)[np.newaxis] #(1, D) | |
mean = np.mean(np.abs(gt_velocity-mean)) | |
last_step = gt_kps[1] - gt_kps[0] | |
last_step = last_step[np.newaxis] #(1, D) | |
last_step = np.mean(np.abs(gt_velocity-last_step)) | |
return last_step, mean | |
def Batch_LVD(gt_kps, pr_kps, symmetrical, weight): | |
if gt_kps.shape[0] > pr_kps.shape[1]: | |
length = pr_kps.shape[1] | |
else: | |
length = gt_kps.shape[0] | |
gt_kps = gt_kps[:length] | |
pr_kps = pr_kps[:, :length] | |
global symmetry | |
symmetry = torch.tensor(symmetry).bool() | |
if symmetrical: | |
# rearrange for compute symmetric. ns means non-symmetrical joints, ys means symmetrical joints. | |
gt_kps = gt_kps[:, rearrange] | |
ns_gt_kps = gt_kps[:, ~symmetry] | |
ys_gt_kps = gt_kps[:, symmetry] | |
ys_gt_kps = ys_gt_kps.reshape(ys_gt_kps.shape[0], -1, 2, 3) | |
ns_gt_velocity = (ns_gt_kps[1:] - ns_gt_kps[:-1]).norm(p=2, dim=-1) | |
ys_gt_velocity = (ys_gt_kps[1:] - ys_gt_kps[:-1]).norm(p=2, dim=-1) | |
left_gt_vel = ys_gt_velocity[:, :, 0].sum(dim=-1) | |
right_gt_vel = ys_gt_velocity[:, :, 1].sum(dim=-1) | |
move_side = torch.where(left_gt_vel>right_gt_vel, torch.ones(left_gt_vel.shape).cuda(), torch.zeros(left_gt_vel.shape).cuda()) | |
ys_gt_velocity = torch.mul(ys_gt_velocity[:, :, 0].transpose(0,1), move_side) + torch.mul(ys_gt_velocity[:, :, 1].transpose(0,1), ~move_side.bool()) | |
ys_gt_velocity = ys_gt_velocity.transpose(0,1) | |
gt_velocity = torch.cat([ns_gt_velocity, ys_gt_velocity], dim=1) | |
pr_kps = pr_kps[:, :, rearrange] | |
ns_pr_kps = pr_kps[:, :, ~symmetry] | |
ys_pr_kps = pr_kps[:, :, symmetry] | |
ys_pr_kps = ys_pr_kps.reshape(ys_pr_kps.shape[0], ys_pr_kps.shape[1], -1, 2, 3) | |
ns_pr_velocity = (ns_pr_kps[:, 1:] - ns_pr_kps[:, :-1]).norm(p=2, dim=-1) | |
ys_pr_velocity = (ys_pr_kps[:, 1:] - ys_pr_kps[:, :-1]).norm(p=2, dim=-1) | |
left_pr_vel = ys_pr_velocity[:, :, :, 0].sum(dim=-1) | |
right_pr_vel = ys_pr_velocity[:, :, :, 1].sum(dim=-1) | |
move_side = torch.where(left_pr_vel > right_pr_vel, torch.ones(left_pr_vel.shape).cuda(), | |
torch.zeros(left_pr_vel.shape).cuda()) | |
ys_pr_velocity = torch.mul(ys_pr_velocity[..., 0].permute(2, 0, 1), move_side) + torch.mul( | |
ys_pr_velocity[..., 1].permute(2, 0, 1), ~move_side.long()) | |
ys_pr_velocity = ys_pr_velocity.permute(1, 2, 0) | |
pr_velocity = torch.cat([ns_pr_velocity, ys_pr_velocity], dim=2) | |
else: | |
gt_velocity = (gt_kps[1:] - gt_kps[:-1]).norm(p=2, dim=-1) | |
pr_velocity = (pr_kps[:, 1:] - pr_kps[:, :-1]).norm(p=2, dim=-1) | |
if weight: | |
w = F.softmax(gt_velocity.sum(dim=1).normal_(), dim=0) | |
else: | |
w = 1 / gt_velocity.shape[0] | |
v_diff = ((pr_velocity - gt_velocity).abs().sum(dim=-1) * w).sum(dim=-1).mean() | |
return v_diff | |
def LVD(gt_kps, pr_kps, symmetrical=False, weight=False): | |
gt_kps = gt_kps.squeeze() | |
pr_kps = pr_kps.squeeze() | |
if len(pr_kps.shape) == 4: | |
return Batch_LVD(gt_kps, pr_kps, symmetrical, weight) | |
# length = np.minimum(gt_kps.shape[0], pr_kps.shape[0]) | |
length = gt_kps.shape[0]-10 | |
# gt_kps = gt_kps[25:length] | |
# pr_kps = pr_kps[25:length] #(T, D) | |
# if pr_kps.shape[0] < gt_kps.shape[0]: | |
# pr_kps = np.pad(pr_kps, [[0, int(gt_kps.shape[0]-pr_kps.shape[0])], [0, 0]], mode='constant') | |
gt_velocity = (gt_kps[1:] - gt_kps[:-1]).norm(p=2, dim=-1) | |
pr_velocity = (pr_kps[1:] - pr_kps[:-1]).norm(p=2, dim=-1) | |
return (pr_velocity-gt_velocity).abs().sum(dim=-1).mean() | |
def diversity(kps): | |
''' | |
kps: bs, seq, dim | |
''' | |
dis_list = [] | |
#the distance between each pair | |
for i in range(kps.shape[0]): | |
for j in range(i+1, kps.shape[0]): | |
seq_i = kps[i] | |
seq_j = kps[j] | |
dis = np.mean(np.abs(seq_i - seq_j)) | |
dis_list.append(dis) | |
return np.mean(dis_list) | |