Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.getcwd()) | |
from glob import glob | |
from argparse import ArgumentParser | |
import json | |
from evaluation.util import * | |
from evaluation.metrics import * | |
from tqdm import tqdm | |
parser = ArgumentParser() | |
parser.add_argument('--speaker', required=True, type=str) | |
parser.add_argument('--post_fix', nargs='+', default=['paper_model'], type=str) | |
args = parser.parse_args() | |
speaker = args.speaker | |
test_audios = sorted(glob('pose_dataset/videos/test_audios/%s/*.wav'%(speaker))) | |
precision_list=[] | |
recall_list=[] | |
accuracy_list=[] | |
for aud in tqdm(test_audios): | |
base_name = os.path.splitext(aud)[0] | |
gt_path = get_full_path(aud, speaker, 'val') | |
_, gt_poses, _ = get_gts(gt_path) | |
if gt_poses.shape[0] < 50: | |
continue | |
gt_poses = gt_poses[np.newaxis,...] | |
# print(gt_poses.shape)#(seq_len, 135*2)pose, lhand, rhand, face | |
for post_fix in args.post_fix: | |
pred_path = base_name + '_'+post_fix+'.json' | |
pred_poses = np.array(json.load(open(pred_path))) | |
# print(pred_poses.shape)#(B, seq_len, 108) | |
pred_poses = cvt25(pred_poses, gt_poses) | |
# print(pred_poses.shape)#(B, seq, pose_dim) | |
gt_valid_points = valid_points(gt_poses) | |
pred_valid_points = valid_points(pred_poses) | |
# print(gt_valid_points.shape, pred_valid_points.shape) | |
gt_mode_transition_seq = mode_transition_seq(gt_valid_points, speaker)#(B, N) | |
pred_mode_transition_seq = mode_transition_seq(pred_valid_points, speaker)#(B, N) | |
# baseline = np.random.randint(0, 2, size=pred_mode_transition_seq.shape) | |
# pred_mode_transition_seq = baseline | |
precision, recall, accuracy = mode_transition_consistency(pred_mode_transition_seq, gt_mode_transition_seq) | |
precision_list.append(precision) | |
recall_list.append(recall) | |
accuracy_list.append(accuracy) | |
print(len(precision_list), len(recall_list), len(accuracy_list)) | |
precision_list = np.mean(precision_list) | |
recall_list = np.mean(recall_list) | |
accuracy_list = np.mean(accuracy_list) | |
print('precision, recall, accu:', precision_list, recall_list, accuracy_list) | |