vscode69's picture
second half
99afdfe
raw
history blame
4.69 kB
import os
from glob import glob
import numpy as np
import json
from matplotlib import pyplot as plt
import pandas as pd
def get_gts(clip):
'''
clip: abs path to the clip dir
'''
keypoints_files = sorted(glob(os.path.join(clip, 'keypoints_new/person_1')+'/*.json'))
upper_body_points = list(np.arange(0, 25))
poses = []
confs = []
neck_to_nose_len = []
mean_position = []
for kp_file in keypoints_files:
kp_load = json.load(open(kp_file, 'r'))['people'][0]
posepts = kp_load['pose_keypoints_2d']
lhandpts = kp_load['hand_left_keypoints_2d']
rhandpts = kp_load['hand_right_keypoints_2d']
facepts = kp_load['face_keypoints_2d']
neck = np.array(posepts).reshape(-1,3)[1]
nose = np.array(posepts).reshape(-1,3)[0]
x_offset = abs(neck[0]-nose[0])
y_offset = abs(neck[1]-nose[1])
neck_to_nose_len.append(y_offset)
mean_position.append([neck[0],neck[1]])
keypoints=np.array(posepts+lhandpts+rhandpts+facepts).reshape(-1,3)[:,:2]
upper_body = keypoints[upper_body_points, :]
hand_points = keypoints[25:, :]
keypoints = np.vstack([upper_body, hand_points])
poses.append(keypoints)
if len(neck_to_nose_len) > 0:
scale_factor = np.mean(neck_to_nose_len)
else:
raise ValueError(clip)
mean_position = np.mean(np.array(mean_position), axis=0)
unlocalized_poses = np.array(poses).copy()
localized_poses = []
for i in range(len(poses)):
keypoints = poses[i]
neck = keypoints[1].copy()
keypoints[:, 0] = (keypoints[:, 0] - neck[0]) / scale_factor
keypoints[:, 1] = (keypoints[:, 1] - neck[1]) / scale_factor
localized_poses.append(keypoints.reshape(-1))
localized_poses=np.array(localized_poses)
return unlocalized_poses, localized_poses, (scale_factor, mean_position)
def get_full_path(wav_name, speaker, split):
'''
get clip path from aud file
'''
wav_name = os.path.basename(wav_name)
wav_name = os.path.splitext(wav_name)[0]
clip_name, vid_name = wav_name[:10], wav_name[11:]
full_path = os.path.join('pose_dataset/videos/', speaker, 'clips', vid_name, 'images/half', split, clip_name)
assert os.path.isdir(full_path), full_path
return full_path
def smooth(res):
'''
res: (B, seq_len, pose_dim)
'''
window = [res[:, 7, :], res[:, 8, :], res[:, 9, :], res[:, 10, :], res[:, 11, :], res[:, 12, :]]
w_size=7
for i in range(10, res.shape[1]-3):
window.append(res[:, i+3, :])
if len(window) > w_size:
window = window[1:]
if (i%25) in [22, 23, 24, 0, 1, 2, 3]:
res[:, i, :] = np.mean(window, axis=1)
return res
def cvt25(pred_poses, gt_poses=None):
'''
gt_poses: (1, seq_len, 270), 135 *2
pred_poses: (B, seq_len, 108), 54 * 2
'''
if gt_poses is None:
gt_poses = np.zeros_like(pred_poses)
else:
gt_poses = gt_poses.repeat(pred_poses.shape[0], axis=0)
length = min(pred_poses.shape[1], gt_poses.shape[1])
pred_poses = pred_poses[:, :length, :]
gt_poses = gt_poses[:, :length, :]
gt_poses = gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1, 2)
pred_poses = pred_poses.reshape(pred_poses.shape[0], pred_poses.shape[1], -1, 2)
gt_poses[:, :, [1, 2, 3, 4, 5, 6, 7], :] = pred_poses[:, :, 1:8, :]
gt_poses[:, :, 25:25+21+21, :] = pred_poses[:, :, 12:, :]
return gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1)
def hand_points(seq):
'''
seq: (B, seq_len, 135*2)
hands only
'''
hand_idx = [1, 2, 3, 4,5 ,6,7] + list(range(25, 25+21+21))
seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2)
return seq[:, :, hand_idx, :].reshape(seq.shape[0], seq.shape[1], -1)
def valid_points(seq):
'''
hands with some head points
'''
valid_idx = [0, 1, 2, 3, 4,5 ,6,7, 8, 9, 10, 11] + list(range(25, 25+21+21))
seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2)
seq = seq[:, :, valid_idx, :].reshape(seq.shape[0], seq.shape[1], -1)
assert seq.shape[-1] == 108, seq.shape
return seq
def draw_cdf(seq, save_name='cdf.jpg', color='slatebule'):
plt.figure()
plt.hist(seq, bins=100, range=(0, 100), color=color)
plt.savefig(save_name)
def to_excel(seq, save_name='res.xlsx'):
'''
seq: (T)
'''
df = pd.DataFrame(seq)
writer = pd.ExcelWriter(save_name)
df.to_excel(writer, 'sheet1')
writer.save()
writer.close()
if __name__ == '__main__':
random_data = np.random.randint(0, 10, 100)
draw_cdf(random_data)