Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.getcwd()) | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
class KeypointLoss(nn.Module): | |
def __init__(self): | |
super(KeypointLoss, self).__init__() | |
def forward(self, pred_seq, gt_seq, gt_conf=None): | |
#pred_seq: (B, C, T) | |
if gt_conf is not None: | |
gt_conf = gt_conf >= 0.01 | |
return F.mse_loss(pred_seq[gt_conf], gt_seq[gt_conf], reduction='mean') | |
else: | |
return F.mse_loss(pred_seq, gt_seq) | |
class KLLoss(nn.Module): | |
def __init__(self, kl_tolerance): | |
super(KLLoss, self).__init__() | |
self.kl_tolerance = kl_tolerance | |
def forward(self, mu, var, mul=1): | |
kl_tolerance = self.kl_tolerance * mul * var.shape[1] / 64 | |
kld_loss = -0.5 * torch.sum(1 + var - mu**2 - var.exp(), dim=1) | |
# kld_loss = -0.5 * torch.sum(1 + (var-1) - (mu) ** 2 - (var-1).exp(), dim=1) | |
if self.kl_tolerance is not None: | |
# above_line = kld_loss[kld_loss > self.kl_tolerance] | |
# if len(above_line) > 0: | |
# kld_loss = torch.mean(kld_loss) | |
# else: | |
# kld_loss = 0 | |
kld_loss = torch.where(kld_loss > kl_tolerance, kld_loss, torch.tensor(kl_tolerance, device='cuda')) | |
# else: | |
kld_loss = torch.mean(kld_loss) | |
return kld_loss | |
class L2KLLoss(nn.Module): | |
def __init__(self, kl_tolerance): | |
super(L2KLLoss, self).__init__() | |
self.kl_tolerance = kl_tolerance | |
def forward(self, x): | |
# TODO: check | |
kld_loss = torch.sum(x ** 2, dim=1) | |
if self.kl_tolerance is not None: | |
above_line = kld_loss[kld_loss > self.kl_tolerance] | |
if len(above_line) > 0: | |
kld_loss = torch.mean(kld_loss) | |
else: | |
kld_loss = 0 | |
else: | |
kld_loss = torch.mean(kld_loss) | |
return kld_loss | |
class L2RegLoss(nn.Module): | |
def __init__(self): | |
super(L2RegLoss, self).__init__() | |
def forward(self, x): | |
#TODO: check | |
return torch.sum(x**2) | |
class L2Loss(nn.Module): | |
def __init__(self): | |
super(L2Loss, self).__init__() | |
def forward(self, x): | |
# TODO: check | |
return torch.sum(x ** 2) | |
class AudioLoss(nn.Module): | |
def __init__(self): | |
super(AudioLoss, self).__init__() | |
def forward(self, dynamics, gt_poses): | |
#pay attention, normalized | |
mean = torch.mean(gt_poses, dim=-1).unsqueeze(-1) | |
gt = gt_poses - mean | |
return F.mse_loss(dynamics, gt) | |
L1Loss = nn.L1Loss |