Spaces:
Running
Running
import os | |
import sys | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
sys.path.append(os.getcwd()) | |
from tqdm import tqdm | |
from transformers import Wav2Vec2Processor | |
from evaluation.metrics import LVD | |
import numpy as np | |
import smplx as smpl | |
from nets import * | |
from trainer.options import parse_args | |
from data_utils import torch_data | |
from trainer.config import load_JsonConfig | |
from data_utils.get_j import get_joints | |
import torch | |
from torch.utils import data | |
def init_model(model_name, model_path, args, config): | |
if model_name == 's2g_face': | |
generator = s2g_face( | |
args, | |
config, | |
) | |
elif model_name == 's2g_body_vq': | |
generator = s2g_body_vq( | |
args, | |
config, | |
) | |
elif model_name == 's2g_body_pixel': | |
generator = s2g_body_pixel( | |
args, | |
config, | |
) | |
else: | |
raise NotImplementedError | |
model_ckpt = torch.load(model_path, map_location=torch.device('cpu')) | |
if model_name == 'smplx_S2G': | |
generator.generator.load_state_dict(model_ckpt['generator']['generator']) | |
elif 'generator' in list(model_ckpt.keys()): | |
generator.load_state_dict(model_ckpt['generator']) | |
else: | |
model_ckpt = {'generator': model_ckpt} | |
generator.load_state_dict(model_ckpt) | |
return generator | |
def init_dataloader(data_root, speakers, args, config): | |
data_base = torch_data( | |
data_root=data_root, | |
speakers=speakers, | |
split='test', | |
limbscaling=False, | |
normalization=config.Data.pose.normalization, | |
norm_method=config.Data.pose.norm_method, | |
split_trans_zero=False, | |
num_pre_frames=config.Data.pose.pre_pose_length, | |
num_generate_length=config.Data.pose.generate_length, | |
num_frames=30, | |
aud_feat_win_size=config.Data.aud.aud_feat_win_size, | |
aud_feat_dim=config.Data.aud.aud_feat_dim, | |
feat_method=config.Data.aud.feat_method, | |
smplx=True, | |
audio_sr=22000, | |
convert_to_6d=config.Data.pose.convert_to_6d, | |
expression=config.Data.pose.expression, | |
config=config | |
) | |
if config.Data.pose.normalization: | |
norm_stats_fn = os.path.join(os.path.dirname(args.model_path), "norm_stats.npy") | |
norm_stats = np.load(norm_stats_fn, allow_pickle=True) | |
data_base.data_mean = norm_stats[0] | |
data_base.data_std = norm_stats[1] | |
else: | |
norm_stats = None | |
data_base.get_dataset() | |
test_set = data_base.all_dataset | |
test_loader = data.DataLoader(test_set, batch_size=1, shuffle=False) | |
return test_set, test_loader, norm_stats | |
def face_loss(gt, gt_param, pr, pr_param): | |
loss_dict = {} | |
jaw_xyz = gt[:, 22:25, :] - pr[:, 22:25, :] | |
jaw_dist = jaw_xyz.norm(p=2, dim=-1) | |
jaw_dist = jaw_dist.sum(dim=-1).mean() | |
loss_dict['jaw_l1'] = jaw_dist | |
landmark_xyz = gt[:, 74:] - pr[:, 74:] | |
landmark_dist = landmark_xyz.norm(p=2, dim=-1) | |
landmark_dist = landmark_dist.sum(dim=-1).mean() | |
loss_dict['landmark_l1'] = landmark_dist | |
face_gt = torch.cat([gt[:, 22:25], gt[:, 74:]], dim=1) | |
face_pr = torch.cat([pr[:, 22:25], pr[:, 74:]], dim=1) | |
loss_dict['LVD'] = LVD(face_gt, face_pr, symmetrical=False, weight=False) | |
return loss_dict | |
def test(test_loader, generator, smplx_model, args, config): | |
print('start testing') | |
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme") | |
am_sr = 16000 | |
loss_dict = {} | |
with torch.no_grad(): | |
i = 0 | |
for bat in tqdm(test_loader, desc="Testing......"): | |
i = i + 1 | |
aud, poses, exp = bat['aud_feat'].to('cuda').to(torch.float32), bat['poses'].to('cuda').to(torch.float32), \ | |
bat['expression'].to('cuda').to(torch.float32) | |
id = bat['speaker'].to('cuda') - 20 | |
betas = bat['betas'][0].to('cuda').to(torch.float64) | |
poses = torch.cat([poses, exp], dim=-2).transpose(-1, -2).squeeze() | |
# poses = to3d(poses, config) | |
cur_wav_file = bat['aud_file'][0] | |
pred_face = generator.infer_on_audio(cur_wav_file, | |
id=id, | |
frame=poses.shape[0], | |
am=am, | |
am_sr=am_sr | |
) | |
pred_face = torch.tensor(pred_face).to('cuda').squeeze() | |
if pred_face.shape[1] > 103: | |
pred_face = pred_face[:, :103] | |
zero_poses = torch.zeros([pred_face.shape[0], 162], device='cuda') | |
full_param = torch.cat([pred_face[:, :3], zero_poses, pred_face[:, 3:]], dim=-1) | |
poses[:, 3:165] = full_param[:, 3:165] | |
gt_joints = get_joints(smplx_model, betas, poses) | |
pred_joints = get_joints(smplx_model, betas, full_param) | |
bat_loss_dict = face_loss(gt_joints, poses, pred_joints, full_param) | |
if loss_dict: # 非空 | |
for key in list(bat_loss_dict.keys()): | |
loss_dict[key] += bat_loss_dict[key] | |
else: | |
for key in list(bat_loss_dict.keys()): | |
loss_dict[key] = bat_loss_dict[key] | |
for key in loss_dict.keys(): | |
loss_dict[key] = loss_dict[key] / i | |
print(key + '=' + str(loss_dict[key].item())) | |
def main(): | |
parser = parse_args() | |
args = parser.parse_args() | |
device = torch.device(args.gpu) | |
torch.cuda.set_device(device) | |
config = load_JsonConfig(args.config_file) | |
os.environ['smplx_npz_path'] = config.smplx_npz_path | |
os.environ['extra_joint_path'] = config.extra_joint_path | |
os.environ['j14_regressor_path'] = config.j14_regressor_path | |
print('init dataloader...') | |
test_set, test_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config) | |
print('init model...') | |
face_model_name = args.face_model_name | |
face_model_path = args.face_model_path | |
generator_face = init_model(face_model_name, face_model_path, args, config) | |
print('init smlpx model...') | |
dtype = torch.float64 | |
smplx_path = './visualise/' | |
model_params = dict(model_path=smplx_path, | |
model_type='smplx', | |
create_global_orient=True, | |
create_body_pose=True, | |
create_betas=True, | |
num_betas=300, | |
create_left_hand_pose=True, | |
create_right_hand_pose=True, | |
use_pca=False, | |
flat_hand_mean=False, | |
create_expression=True, | |
num_expression_coeffs=100, | |
num_pca_comps=12, | |
create_jaw_pose=True, | |
create_leye_pose=True, | |
create_reye_pose=True, | |
create_transl=False, | |
dtype=dtype, ) | |
smplx_model = smpl.create(**model_params).to('cuda') | |
test(test_loader, generator_face, smplx_model, args, config) | |
if __name__ == '__main__': | |
main() | |