Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.getcwd()) | |
from nets.base import TrainWrapperBaseClass | |
from nets.spg.s2glayers import Discriminator as D_S2G | |
from nets.spg.vqvae_1d import AE as s2g_body | |
import torch | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from data_utils.lower_body import c_index, c_index_3d, c_index_6d | |
def separate_aa(aa): | |
aa = aa[:, :, :].reshape(aa.shape[0], aa.shape[1], -1, 5) | |
axis = F.normalize(aa[:, :, :, :3], dim=-1) | |
angle = F.normalize(aa[:, :, :, 3:5], dim=-1) | |
return axis, angle | |
class TrainWrapper(TrainWrapperBaseClass): | |
''' | |
a wrapper receving a batch from data_utils and calculate loss | |
''' | |
def __init__(self, args, config): | |
self.args = args | |
self.config = config | |
self.device = torch.device(self.args.gpu) | |
self.global_step = 0 | |
self.gan = False | |
self.convert_to_6d = self.config.Data.pose.convert_to_6d | |
self.preleng = self.config.Data.pose.pre_pose_length | |
self.expression = self.config.Data.pose.expression | |
self.epoch = 0 | |
self.init_params() | |
self.num_classes = 4 | |
self.g = s2g_body(self.each_dim[1] + self.each_dim[2], embedding_dim=64, num_embeddings=0, | |
num_hiddens=1024, num_residual_layers=2, num_residual_hiddens=512).to(self.device) | |
if self.gan: | |
self.discriminator = D_S2G( | |
pose_dim=110 + 64, pose=self.pose | |
).to(self.device) | |
else: | |
self.discriminator = None | |
if self.convert_to_6d: | |
self.c_index = c_index_6d | |
else: | |
self.c_index = c_index_3d | |
super().__init__(args, config) | |
def init_optimizer(self): | |
self.g_optimizer = optim.Adam( | |
self.g.parameters(), | |
lr=self.config.Train.learning_rate.generator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
def state_dict(self): | |
model_state = { | |
'g': self.g.state_dict(), | |
'g_optim': self.g_optimizer.state_dict(), | |
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None, | |
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None | |
} | |
return model_state | |
def __call__(self, bat): | |
# assert (not self.args.infer), "infer mode" | |
self.global_step += 1 | |
total_loss = None | |
loss_dict = {} | |
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32) | |
# id = bat['speaker'].to(self.device) - 20 | |
# id = F.one_hot(id, self.num_classes) | |
poses = poses[:, self.c_index, :] | |
gt_poses = poses[:, :, self.preleng:].permute(0, 2, 1) | |
loss = 0 | |
loss_dict, loss = self.vq_train(gt_poses[:, :], 'g', self.g, loss_dict, loss) | |
return total_loss, loss_dict | |
def vq_train(self, gt, name, model, dict, total_loss, pre=None): | |
x_recon = model(gt_poses=gt, pre_state=pre) | |
loss, loss_dict = self.get_loss(pred_poses=x_recon, gt_poses=gt, pre=pre) | |
# total_loss = total_loss + loss | |
if name == 'g': | |
optimizer_name = 'g_optimizer' | |
optimizer = getattr(self, optimizer_name) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
for key in list(loss_dict.keys()): | |
dict[name + key] = loss_dict.get(key, 0).item() | |
return dict, total_loss | |
def get_loss(self, | |
pred_poses, | |
gt_poses, | |
pre=None | |
): | |
loss_dict = {} | |
rec_loss = torch.mean(torch.abs(pred_poses - gt_poses)) | |
v_pr = pred_poses[:, 1:] - pred_poses[:, :-1] | |
v_gt = gt_poses[:, 1:] - gt_poses[:, :-1] | |
velocity_loss = torch.mean(torch.abs(v_pr - v_gt)) | |
if pre is None: | |
f0_vel = 0 | |
else: | |
v0_pr = pred_poses[:, 0] - pre[:, -1] | |
v0_gt = gt_poses[:, 0] - pre[:, -1] | |
f0_vel = torch.mean(torch.abs(v0_pr - v0_gt)) | |
gen_loss = rec_loss + velocity_loss + f0_vel | |
loss_dict['rec_loss'] = rec_loss | |
loss_dict['velocity_loss'] = velocity_loss | |
# loss_dict['e_q_loss'] = e_q_loss | |
if pre is not None: | |
loss_dict['f0_vel'] = f0_vel | |
return gen_loss, loss_dict | |
def load_state_dict(self, state_dict): | |
self.g.load_state_dict(state_dict['g']) | |
def extract(self, x): | |
self.g.eval() | |
if x.shape[2] > self.full_dim: | |
if x.shape[2] == 239: | |
x = x[:, :, 102:] | |
x = x[:, :, self.c_index] | |
feat = self.g.encode(x) | |
return feat.transpose(1, 2), x | |