qgyd2021 commited on
Commit
57b5dd0
·
1 Parent(s): 22ed4b7

[update]add sent_tokenize

Browse files
Files changed (1) hide show
  1. main.py +12 -9
main.py CHANGED
@@ -12,6 +12,7 @@ os.environ["HUGGINGFACE_HUB_CACHE"] = hf_hub_cache
12
  import gradio as gr
13
  import nltk
14
  from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
 
15
 
16
 
17
  def main():
@@ -22,11 +23,11 @@ def main():
22
  }
23
  }
24
 
25
- def multilingual_translate(src_text: str,
26
- src_lang: str,
27
- tgt_lang: str,
28
- model_name: str,
29
- ):
30
  model_group = model_dict.get(model_name)
31
  if model_group is None:
32
  for k in list(model_dict.keys()):
@@ -54,6 +55,8 @@ def main():
54
  text_decoded = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
55
  result += text_decoded[0]
56
 
 
 
57
  return result
58
 
59
  title = "Multilingual Machine Translation"
@@ -88,16 +91,16 @@ It was introduced in this [paper](https://arxiv.org/abs/2010.11125) and first re
88
 
89
  output = gr.Textbox(lines=4, label="Output Text")
90
 
91
- app = gr.Interface(
92
- fn=multilingual_translate,
93
  inputs=inputs,
94
  outputs=output,
95
  examples=examples,
96
  title=title,
97
  description=description,
98
- cache_examples=True
99
  )
100
- app.launch(debug=True, enable_queue=True)
101
 
102
  return
103
 
 
12
  import gradio as gr
13
  import nltk
14
  from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
15
+ from transformers.generation.streamers import TextIteratorStreamer
16
 
17
 
18
  def main():
 
23
  }
24
  }
25
 
26
+ def fn_non_stream(src_text: str,
27
+ src_lang: str,
28
+ tgt_lang: str,
29
+ model_name: str,
30
+ ):
31
  model_group = model_dict.get(model_name)
32
  if model_group is None:
33
  for k in list(model_dict.keys()):
 
55
  text_decoded = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
56
  result += text_decoded[0]
57
 
58
+ output.value = result
59
+
60
  return result
61
 
62
  title = "Multilingual Machine Translation"
 
91
 
92
  output = gr.Textbox(lines=4, label="Output Text")
93
 
94
+ demo = gr.Interface(
95
+ fn=fn_non_stream,
96
  inputs=inputs,
97
  outputs=output,
98
  examples=examples,
99
  title=title,
100
  description=description,
101
+ cache_examples=False
102
  )
103
+ demo.queue().launch(debug=True, enable_queue=True)
104
 
105
  return
106