Spaces:
Runtime error
Runtime error
File size: 5,072 Bytes
c5ef9d5 3ee9c74 c5ef9d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.43.0")
from lmdeploy.serve.gradio.turbomind_coupled import *
from lmdeploy.messages import TurbomindEngineConfig
backend_config = TurbomindEngineConfig(max_batch_size=1, cache_max_entry_count=0.05, model_format='awq')
model_path = 'internlm/internlm2_5-7b-chat-4bit'
InterFace.async_engine = AsyncEngine(
model_path=model_path,
backend='turbomind',
backend_config=backend_config,
tp=1)
async def reset_local_func(instruction_txtbox: gr.Textbox,
state_chatbot: Sequence, session_id: int):
"""reset the session.
Args:
instruction_txtbox (str): user's prompt
state_chatbot (Sequence): the chatting history
session_id (int): the session id
"""
state_chatbot = []
# end the session
with InterFace.lock:
InterFace.global_session_id += 1
session_id = InterFace.global_session_id
return (state_chatbot, state_chatbot, gr.Textbox.update(value=''), session_id)
async def cancel_local_func(state_chatbot: Sequence, cancel_btn: gr.Button,
reset_btn: gr.Button, session_id: int):
"""stop the session.
Args:
instruction_txtbox (str): user's prompt
state_chatbot (Sequence): the chatting history
cancel_btn (gr.Button): the cancel button
reset_btn (gr.Button): the reset button
session_id (int): the session id
"""
yield (state_chatbot, disable_btn, disable_btn, session_id)
InterFace.async_engine.stop_session(session_id)
# pytorch backend does not support resume chat history now
if InterFace.async_engine.backend == 'pytorch':
yield (state_chatbot, disable_btn, enable_btn, session_id)
else:
with InterFace.lock:
InterFace.global_session_id += 1
session_id = InterFace.global_session_id
messages = []
for qa in state_chatbot:
messages.append(dict(role='user', content=qa[0]))
if qa[1] is not None:
messages.append(dict(role='assistant', content=qa[1]))
gen_config = GenerationConfig(max_new_tokens=0)
async for out in InterFace.async_engine.generate(messages,
session_id,
gen_config=gen_config,
stream_response=True,
sequence_start=True,
sequence_end=False):
pass
yield (state_chatbot, disable_btn, enable_btn, session_id)
with gr.Blocks(css=CSS, theme=THEME) as demo:
state_chatbot = gr.State([])
state_session_id = gr.State(0)
with gr.Column(elem_id='container'):
gr.Markdown('## LMDeploy Playground')
chatbot = gr.Chatbot(
elem_id='chatbot',
label=InterFace.async_engine.engine.model_name)
instruction_txtbox = gr.Textbox(
placeholder='Please input the instruction',
label='Instruction')
with gr.Row():
cancel_btn = gr.Button(value='Cancel', interactive=False)
reset_btn = gr.Button(value='Reset')
with gr.Row():
request_output_len = gr.Slider(1,
2048,
value=512,
step=1,
label='Maximum new tokens')
top_p = gr.Slider(0.01, 1, value=0.8, step=0.01, label='Top_p')
temperature = gr.Slider(0.01,
1.5,
value=0.7,
step=0.01,
label='Temperature')
send_event = instruction_txtbox.submit(chat_stream_local, [
instruction_txtbox, state_chatbot, cancel_btn, reset_btn,
state_session_id, top_p, temperature, request_output_len
], [state_chatbot, chatbot, cancel_btn, reset_btn])
instruction_txtbox.submit(
lambda: gr.Textbox.update(value=''),
[],
[instruction_txtbox],
)
cancel_btn.click(
cancel_local_func,
[state_chatbot, cancel_btn, reset_btn, state_session_id],
[state_chatbot, cancel_btn, reset_btn, state_session_id],
cancels=[send_event])
reset_btn.click(reset_local_func,
[instruction_txtbox, state_chatbot, state_session_id],
[state_chatbot, chatbot, instruction_txtbox, state_session_id],
cancels=[send_event])
def init():
with InterFace.lock:
InterFace.global_session_id += 1
new_session_id = InterFace.global_session_id
return new_session_id
demo.load(init, inputs=None, outputs=[state_session_id])
demo.queue(max_size=100).launch(max_threads=InterFace.async_engine.instance_num) |