invincible-jha
commited on
Upload 3 files
Browse files- src/models/analyzer.py +61 -0
- src/models/audio-processor.py +55 -0
- src/models/model-manager.py +79 -0
src/models/analyzer.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .model_manager import ModelManager
|
2 |
+
from .audio_processor import AudioProcessor
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
+
class Analyzer:
|
6 |
+
def __init__(self, model_manager: ModelManager, audio_processor: AudioProcessor):
|
7 |
+
self.model_manager = model_manager
|
8 |
+
self.audio_processor = audio_processor
|
9 |
+
self.model_manager.load_models()
|
10 |
+
|
11 |
+
def analyze(self, audio_path: str) -> Dict:
|
12 |
+
# Process audio
|
13 |
+
waveform, features = self.audio_processor.process_audio(audio_path)
|
14 |
+
|
15 |
+
# Get transcription
|
16 |
+
transcription = self.model_manager.transcribe(waveform)
|
17 |
+
|
18 |
+
# Analyze emotions
|
19 |
+
emotions = self.model_manager.analyze_emotions(transcription)
|
20 |
+
|
21 |
+
# Analyze mental health indicators
|
22 |
+
mental_health = self.model_manager.analyze_mental_health(transcription)
|
23 |
+
|
24 |
+
# Combine analysis with audio features
|
25 |
+
mental_health = self._combine_analysis(mental_health, features)
|
26 |
+
|
27 |
+
return {
|
28 |
+
'transcription': transcription,
|
29 |
+
'emotions': {
|
30 |
+
'scores': emotions,
|
31 |
+
'dominant_emotion': max(emotions.items(), key=lambda x: x[1])[0]
|
32 |
+
},
|
33 |
+
'mental_health_indicators': mental_health,
|
34 |
+
'audio_features': features
|
35 |
+
}
|
36 |
+
|
37 |
+
def _combine_analysis(self, mental_health: Dict, features: Dict) -> Dict:
|
38 |
+
"""Combine mental health analysis with audio features"""
|
39 |
+
# Adjust risk scores based on audio features
|
40 |
+
energy_level = features['energy']['mean']
|
41 |
+
pitch_variability = features['pitch']['std']
|
42 |
+
|
43 |
+
# Simple risk score adjustment based on audio features
|
44 |
+
mental_health['depression_risk'] = (
|
45 |
+
mental_health['depression_risk'] * 0.7 +
|
46 |
+
(1 - energy_level) * 0.3 # Lower energy may indicate depression
|
47 |
+
)
|
48 |
+
|
49 |
+
mental_health['anxiety_risk'] = (
|
50 |
+
mental_health['anxiety_risk'] * 0.7 +
|
51 |
+
pitch_variability * 0.3 # Higher pitch variability may indicate anxiety
|
52 |
+
)
|
53 |
+
|
54 |
+
# Add confidence scores
|
55 |
+
mental_health['confidence'] = {
|
56 |
+
'depression': 0.8, # Example confidence scores
|
57 |
+
'anxiety': 0.8,
|
58 |
+
'stress': 0.7
|
59 |
+
}
|
60 |
+
|
61 |
+
return mental_health
|
src/models/audio-processor.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import numpy as np
|
3 |
+
from typing import Dict, Tuple
|
4 |
+
|
5 |
+
class AudioProcessor:
|
6 |
+
def __init__(self):
|
7 |
+
self.sample_rate = 16000
|
8 |
+
self.n_mfcc = 13
|
9 |
+
self.n_mels = 128
|
10 |
+
|
11 |
+
def process_audio(self, audio_path: str) -> Tuple[np.ndarray, Dict]:
|
12 |
+
# Load and preprocess audio
|
13 |
+
waveform, sr = librosa.load(audio_path, sr=self.sample_rate)
|
14 |
+
|
15 |
+
# Extract features
|
16 |
+
features = {
|
17 |
+
'mfcc': self._extract_mfcc(waveform),
|
18 |
+
'pitch': self._extract_pitch(waveform),
|
19 |
+
'energy': self._extract_energy(waveform)
|
20 |
+
}
|
21 |
+
|
22 |
+
return waveform, features
|
23 |
+
|
24 |
+
def _extract_mfcc(self, waveform: np.ndarray) -> np.ndarray:
|
25 |
+
mfccs = librosa.feature.mfcc(
|
26 |
+
y=waveform,
|
27 |
+
sr=self.sample_rate,
|
28 |
+
n_mfcc=self.n_mfcc
|
29 |
+
)
|
30 |
+
return mfccs.mean(axis=1)
|
31 |
+
|
32 |
+
def _extract_pitch(self, waveform: np.ndarray) -> Dict:
|
33 |
+
f0, voiced_flag, voiced_probs = librosa.pyin(
|
34 |
+
waveform,
|
35 |
+
fmin=librosa.note_to_hz('C2'),
|
36 |
+
fmax=librosa.note_to_hz('C7'),
|
37 |
+
sr=self.sample_rate
|
38 |
+
)
|
39 |
+
|
40 |
+
return {
|
41 |
+
'mean': float(np.nanmean(f0)),
|
42 |
+
'std': float(np.nanstd(f0)),
|
43 |
+
'max': float(np.nanmax(f0)),
|
44 |
+
'min': float(np.nanmin(f0))
|
45 |
+
}
|
46 |
+
|
47 |
+
def _extract_energy(self, waveform: np.ndarray) -> Dict:
|
48 |
+
rms = librosa.feature.rms(y=waveform)[0]
|
49 |
+
|
50 |
+
return {
|
51 |
+
'mean': float(np.mean(rms)),
|
52 |
+
'std': float(np.std(rms)),
|
53 |
+
'max': float(np.max(rms)),
|
54 |
+
'min': float(np.min(rms))
|
55 |
+
}
|
src/models/model-manager.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
WhisperProcessor, WhisperForConditionalGeneration,
|
3 |
+
AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
)
|
5 |
+
import torch
|
6 |
+
|
7 |
+
class ModelManager:
|
8 |
+
def __init__(self):
|
9 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
self.models = {}
|
11 |
+
self.tokenizers = {}
|
12 |
+
self.processors = {}
|
13 |
+
|
14 |
+
def load_models(self):
|
15 |
+
# Load Whisper for speech recognition
|
16 |
+
self.processors['whisper'] = WhisperProcessor.from_pretrained("openai/whisper-base")
|
17 |
+
self.models['whisper'] = WhisperForConditionalGeneration.from_pretrained(
|
18 |
+
"openai/whisper-base"
|
19 |
+
).to(self.device)
|
20 |
+
|
21 |
+
# Load EmoBERTa for emotion detection
|
22 |
+
self.tokenizers['emotion'] = AutoTokenizer.from_pretrained("arpanghoshal/EmoRoBERTa")
|
23 |
+
self.models['emotion'] = AutoModelForSequenceClassification.from_pretrained(
|
24 |
+
"arpanghoshal/EmoRoBERTa"
|
25 |
+
).to(self.device)
|
26 |
+
|
27 |
+
# Load ClinicalBERT for analysis
|
28 |
+
self.tokenizers['clinical'] = AutoTokenizer.from_pretrained(
|
29 |
+
"emilyalsentzer/Bio_ClinicalBERT"
|
30 |
+
)
|
31 |
+
self.models['clinical'] = AutoModelForSequenceClassification.from_pretrained(
|
32 |
+
"emilyalsentzer/Bio_ClinicalBERT"
|
33 |
+
).to(self.device)
|
34 |
+
|
35 |
+
def transcribe(self, audio_input):
|
36 |
+
inputs = self.processors['whisper'](
|
37 |
+
audio_input,
|
38 |
+
return_tensors="pt"
|
39 |
+
).input_features.to(self.device)
|
40 |
+
|
41 |
+
generated_ids = self.models['whisper'].generate(inputs)
|
42 |
+
transcription = self.processors['whisper'].batch_decode(
|
43 |
+
generated_ids,
|
44 |
+
skip_special_tokens=True
|
45 |
+
)[0]
|
46 |
+
return transcription
|
47 |
+
|
48 |
+
def analyze_emotions(self, text):
|
49 |
+
inputs = self.tokenizers['emotion'](
|
50 |
+
text,
|
51 |
+
return_tensors="pt",
|
52 |
+
padding=True,
|
53 |
+
truncation=True,
|
54 |
+
max_length=512
|
55 |
+
).to(self.device)
|
56 |
+
|
57 |
+
outputs = self.models['emotion'](**inputs)
|
58 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
59 |
+
|
60 |
+
emotions = ['anger', 'fear', 'joy', 'love', 'sadness', 'surprise']
|
61 |
+
return {emotion: float(prob) for emotion, prob in zip(emotions, probs[0])}
|
62 |
+
|
63 |
+
def analyze_mental_health(self, text):
|
64 |
+
inputs = self.tokenizers['clinical'](
|
65 |
+
text,
|
66 |
+
return_tensors="pt",
|
67 |
+
padding=True,
|
68 |
+
truncation=True,
|
69 |
+
max_length=512
|
70 |
+
).to(self.device)
|
71 |
+
|
72 |
+
outputs = self.models['clinical'](**inputs)
|
73 |
+
scores = torch.sigmoid(outputs.logits)
|
74 |
+
|
75 |
+
return {
|
76 |
+
'depression_risk': float(scores[0][0]),
|
77 |
+
'anxiety_risk': float(scores[0][1]),
|
78 |
+
'stress_level': float(scores[0][2])
|
79 |
+
}
|