ishans24 commited on
Commit
9f9b1cc
·
verified ·
1 Parent(s): 4ec6833

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import random
4
+ import gradio as gr
5
+ import numpy as np
6
+ from tensorflow.keras.preprocessing.image import img_to_array
7
+ from tensorflow.keras.models import load_model
8
+
9
+ model = load_model('covid-model.h5')
10
+ ex=['./examples/' + path for path in os.listdir('examples')]
11
+ random.shuffle(ex)
12
+
13
+ def predict_image(image_path):
14
+ try:
15
+
16
+ img = cv2.imread(image_path)
17
+ img_array = img_to_array(img)
18
+ img_resized = cv2.resize(img_array, (224, 224))
19
+ prediction = model.predict(np.expand_dims(img_resized / 255.0, axis=0))
20
+ prediction = 'Normal' if prediction >= 0.5 else 'Covid'
21
+ return f'Prediction : {prediction}'
22
+ except Exception as e:
23
+ print(f"Error predicting image: {e}")
24
+
25
+ # Define the interface
26
+ def app():
27
+ title = "COVID-19 Detection using X-Ray"
28
+
29
+ gr.Interface(
30
+ title=title,
31
+ fn=predict_image,
32
+ inputs=gr.Image(type="filepath"),
33
+ outputs=gr.Textbox(),
34
+ examples=ex,
35
+ ).launch()
36
+
37
+ # Run the app
38
+ if __name__ == "__main__":
39
+ app()