Spaces:
Running
Running
Upload 20 files
Browse files- .chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/data_level0.bin +3 -0
- .chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/header.bin +3 -0
- .chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/length.bin +3 -0
- .chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/link_lists.bin +3 -0
- .chromadb/chroma.sqlite3 +3 -0
- .gitattributes +1 -0
- SmartSearch/README.md +19 -0
- SmartSearch/database/__init__.py +0 -0
- SmartSearch/database/annoydb.py +89 -0
- SmartSearch/database/chromadb.py +213 -0
- SmartSearch/database/vector_store.py +18 -0
- SmartSearch/embedding_provider.py +18 -0
- SmartSearch/hybrid_search.py +102 -0
- SmartSearch/keyword_search_provider.py +24 -0
- SmartSearch/providers/OpenAIEmbedding.py +125 -0
- SmartSearch/providers/SentenceTransformerEmbedding.py +85 -0
- SmartSearch/providers/__init__.py +0 -0
- SmartSearch/search_manager.py +40 -0
- app.py +34 -0
- requirements.txt +116 -0
- utils.py +24 -0
.chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a13e72541800c513c73dccea69f79e39cf4baef4fa23f7e117c0d6b0f5f99670
|
3 |
+
size 3212000
|
.chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
|
3 |
+
size 100
|
.chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:939f9b658043836d45463f2f0a74346c2d2431220230ae6d8c2ad709814800bb
|
3 |
+
size 4000
|
.chromadb/20cb0d5e-499b-4d31-8a46-9a4bf83219b0/link_lists.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
|
3 |
+
size 0
|
.chromadb/chroma.sqlite3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3484a9a12bf3911aa0a9d714f2a7b1c5a6b683276c2146cd4342065c375d29d5
|
3 |
+
size 1622016
|
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
.chromadb/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
SmartSearch/README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Smart Search
|
2 |
+
### Enhancing search experience with natural language
|
3 |
+
|
4 |
+
|
5 |
+
The search should be able to support multiple llms providers
|
6 |
+
|
7 |
+
* create embeddings
|
8 |
+
* can do hybrid search
|
9 |
+
* semantic search
|
10 |
+
* keyword search
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
SmartSearch/database/__init__.py
ADDED
File without changes
|
SmartSearch/database/annoydb.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Union, Any
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from annoy import AnnoyIndex
|
5 |
+
|
6 |
+
from .vector_store import VectorStore
|
7 |
+
|
8 |
+
class AnnoyDB(VectorStore):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
embedding_dim: int,
|
12 |
+
metric: str = 'angular'
|
13 |
+
) -> None:
|
14 |
+
self.documents = []
|
15 |
+
self.metadata = []
|
16 |
+
self.embedding_dim = embedding_dim
|
17 |
+
|
18 |
+
self.index = AnnoyIndex(embedding_dim, metric)
|
19 |
+
self.index_built = False
|
20 |
+
|
21 |
+
def add_document(self, text: str, metadata: Dict[str, Any] = None):
|
22 |
+
"""
|
23 |
+
Add a document to the search index.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
text: The document text
|
27 |
+
metadata: Optional metadata about the document
|
28 |
+
"""
|
29 |
+
self.documents.append(text)
|
30 |
+
self.metadata.append(metadata or {})
|
31 |
+
|
32 |
+
# Generate embedding using Sentence Transformers
|
33 |
+
embedding = self.model.encode(text, show_progress_bar=False)
|
34 |
+
|
35 |
+
# Add to Annoy index
|
36 |
+
index_id = len(self.documents) - 1
|
37 |
+
self.index.add_item(index_id, embedding)
|
38 |
+
self.index_built = False
|
39 |
+
|
40 |
+
def add_documents(self, texts: List[str], embeddings: np.array, metadata_list: List[Dict[str, Any]] = None):
|
41 |
+
"""
|
42 |
+
Batch add documents to the search index.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
texts: List of document texts
|
46 |
+
metadata_list: Optional list of metadata dictionaries
|
47 |
+
"""
|
48 |
+
if metadata_list is None:
|
49 |
+
metadata_list = [{} for _ in texts]
|
50 |
+
|
51 |
+
# Add documents and embeddings
|
52 |
+
print("Adding to index...")
|
53 |
+
for i, (text, metadata, embedding) in enumerate(zip(texts, metadata_list, embeddings)):
|
54 |
+
self.documents.append(text)
|
55 |
+
self.metadata.append(metadata)
|
56 |
+
self.index.add_item(len(self.documents) - 1, embedding)
|
57 |
+
|
58 |
+
self.index_built = False
|
59 |
+
print("Done")
|
60 |
+
|
61 |
+
def add_data(self, embedding: np.ndarray, document: str):
|
62 |
+
item_id = len(self.documents)
|
63 |
+
self.index.add_item(item_id, embedding)
|
64 |
+
self.documents.append(document)
|
65 |
+
|
66 |
+
def build(self, num_trees:int = 10):
|
67 |
+
self.index.build(num_trees)
|
68 |
+
|
69 |
+
def save(self, filepath: str):
|
70 |
+
self.index.save(filepath)
|
71 |
+
|
72 |
+
def load(self, filepath: str):
|
73 |
+
self.index.load(filepath)
|
74 |
+
|
75 |
+
def search(self, query_embedding: np.ndarray, top_k: int = 5) -> List[Dict[str, Union[str, float]]]:
|
76 |
+
indices, distances = self.index.get_nns_by_vector(
|
77 |
+
query_embedding, top_k, include_distances=True
|
78 |
+
)
|
79 |
+
|
80 |
+
results = [
|
81 |
+
{
|
82 |
+
"document": self.documents[idx],
|
83 |
+
"score": 1 / (1 + distance) # Convert distance to similarity
|
84 |
+
} for idx, distance in zip(indices, distances)
|
85 |
+
]
|
86 |
+
|
87 |
+
return results
|
88 |
+
|
89 |
+
|
SmartSearch/database/chromadb.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, Optional, List
|
2 |
+
|
3 |
+
import chromadb
|
4 |
+
from chromadb.config import Settings
|
5 |
+
from chromadb.api.types import (
|
6 |
+
Where,
|
7 |
+
GetResult,
|
8 |
+
QueryResult,
|
9 |
+
)
|
10 |
+
|
11 |
+
from ..embedding_provider import EmbeddingProvider
|
12 |
+
from .vector_store import VectorStore
|
13 |
+
|
14 |
+
|
15 |
+
class ChromaDB(VectorStore):
|
16 |
+
"""
|
17 |
+
ChromaDB is an example of a vector-store class implementation.
|
18 |
+
|
19 |
+
See more:
|
20 |
+
https://github.com/chroma-core/chroma
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
configs: Dict[str, Any] = {},
|
26 |
+
db_path: str = ".chromadb",
|
27 |
+
embedding_function: Optional[EmbeddingProvider] = None,
|
28 |
+
collection_name: Optional[str] = None,
|
29 |
+
) -> None:
|
30 |
+
self.client = chromadb.PersistentClient(
|
31 |
+
path=db_path
|
32 |
+
)
|
33 |
+
self.configs = configs
|
34 |
+
|
35 |
+
self.embedding_function = embedding_function
|
36 |
+
self._collection_name = collection_name
|
37 |
+
|
38 |
+
self.collection = self.client.get_or_create_collection(
|
39 |
+
name = self.collection_name or "default_collection"
|
40 |
+
)
|
41 |
+
|
42 |
+
# self.logger = get_logger(self.__class__.__name__)
|
43 |
+
|
44 |
+
@property
|
45 |
+
def db_path(self) -> str:
|
46 |
+
return self.client.get_settings().persist_directory
|
47 |
+
|
48 |
+
@db_path.setter
|
49 |
+
def db_path(self, value: str) -> None:
|
50 |
+
self.client = chromadb.PersistentClient(path=value)
|
51 |
+
|
52 |
+
self.collection = self.client.get_or_create_collection(
|
53 |
+
name = self.collection_name or "default_collection"
|
54 |
+
)
|
55 |
+
|
56 |
+
@property
|
57 |
+
def collection_name(self):
|
58 |
+
return self._collection_name
|
59 |
+
|
60 |
+
@collection_name.setter
|
61 |
+
def collection_name(self, value):
|
62 |
+
self._collection_name = value
|
63 |
+
self.collection.modify(name=value)
|
64 |
+
|
65 |
+
def add_data(
|
66 |
+
self,
|
67 |
+
documents: List[str],
|
68 |
+
ids: List[str],
|
69 |
+
metadatas: Optional[List[Dict[str, Any]]] = None,
|
70 |
+
**optional_kwargs
|
71 |
+
) -> None:
|
72 |
+
"""
|
73 |
+
Add data to the collection by creating embeddings for them.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
documents (List[str]): List of documents to add.
|
77 |
+
ids (List[str]): List of ids for the documents.
|
78 |
+
metadatas (Optional[List[Dict[str, Any]]]): List of metadata for the documents.
|
79 |
+
**optional_kwargs: Additional keyword arguments (see collection.add for more).
|
80 |
+
"""
|
81 |
+
|
82 |
+
try:
|
83 |
+
params = {
|
84 |
+
"documents": documents,
|
85 |
+
"ids": ids,
|
86 |
+
**optional_kwargs
|
87 |
+
}
|
88 |
+
|
89 |
+
params["metadatas"] = metadatas or None
|
90 |
+
|
91 |
+
# If an embedding function is provided, create embeddings for the documents
|
92 |
+
if self.embedding_function:
|
93 |
+
embeddings = self.embedding_function.embed_documents(documents)
|
94 |
+
params["embeddings"] = embeddings
|
95 |
+
|
96 |
+
self.collection.add(**params)
|
97 |
+
except Exception as e:
|
98 |
+
# self.logger.error(f"Error adding data to collection: {e}")
|
99 |
+
print(f"Error adding data to collection: {e}")
|
100 |
+
raise e
|
101 |
+
|
102 |
+
def search(
|
103 |
+
self,
|
104 |
+
query_text: Optional[List[str]] = None,
|
105 |
+
query_embedding: Optional[List[List[float]]] = None,
|
106 |
+
n_results: int = 10,
|
107 |
+
**optional_kwargs
|
108 |
+
) -> QueryResult:
|
109 |
+
"""
|
110 |
+
Query the collection for similar documents.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
query_text (Optional[List[str]]): List of query texts.
|
114 |
+
query_embedding (Optional[List[List[float]]]): List of query embeddings.
|
115 |
+
n_results (int): Number of results to return.
|
116 |
+
**optional_kwargs: Additional keyword arguments (see collection.query for more).
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
QueryResult: The result of the query.
|
120 |
+
"""
|
121 |
+
|
122 |
+
try:
|
123 |
+
if query_text is None and query_embedding is None:
|
124 |
+
raise ValueError("Either query_text or query_embedding must be provided.")
|
125 |
+
|
126 |
+
params = {
|
127 |
+
"n_results": n_results,
|
128 |
+
**optional_kwargs
|
129 |
+
}
|
130 |
+
|
131 |
+
if query_text and query_embedding is None:
|
132 |
+
if self.embedding_function:
|
133 |
+
query_embedding = self.embedding_function.embed_query(query_text)
|
134 |
+
params["query_embeddings"] = query_embedding
|
135 |
+
else:
|
136 |
+
params["query_text"] = query_text
|
137 |
+
|
138 |
+
elif query_embedding and query_text is None:
|
139 |
+
params["query_embeddings"] = query_embedding
|
140 |
+
|
141 |
+
elif query_embedding and query_text:
|
142 |
+
params["query_embeddings"] = query_embedding
|
143 |
+
|
144 |
+
if self.embedding_function:
|
145 |
+
embeddings = self.embedding_function.embed_query(query_text)
|
146 |
+
params["query_embeddings"] = query_embedding.extend(embeddings)
|
147 |
+
else:
|
148 |
+
params["query_text"] = query_text
|
149 |
+
|
150 |
+
return self.collection.query(**params)
|
151 |
+
except Exception as e:
|
152 |
+
# self.logger.error(f"Error querying data from collection: {e}")
|
153 |
+
print(f"Error querying data from collection: {e}")
|
154 |
+
raise e
|
155 |
+
|
156 |
+
def query_by_id_or_metadata(
|
157 |
+
self,
|
158 |
+
ids: Optional[List[str]] = None,
|
159 |
+
where: Optional[Where] = None,
|
160 |
+
n_results: int = 10,
|
161 |
+
**optional_kwargs
|
162 |
+
) -> GetResult:
|
163 |
+
"""
|
164 |
+
Query the collection for similar documents.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
ids (Optional[List[str]]): List of ids to query.
|
168 |
+
where (Optional[Where]): Where clause to query.
|
169 |
+
n_results (int): Number of results to return.
|
170 |
+
**optional_kwargs: Additional keyword arguments (see collection.get for more).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
GetResult: The result of the query.
|
174 |
+
"""
|
175 |
+
|
176 |
+
try:
|
177 |
+
if ids is None and where is None:
|
178 |
+
raise ValueError("Either ids or where must be provided.")
|
179 |
+
|
180 |
+
params = {
|
181 |
+
"n_results": n_results,
|
182 |
+
**optional_kwargs
|
183 |
+
}
|
184 |
+
|
185 |
+
if ids:
|
186 |
+
params["ids"] = ids
|
187 |
+
if where:
|
188 |
+
params["where"] = where
|
189 |
+
|
190 |
+
return self.collection.get(**params)
|
191 |
+
except Exception as e:
|
192 |
+
# self.logger.error(f"Error querying data from collection: {e}")
|
193 |
+
print(f"Error querying data from collection: {e}")
|
194 |
+
raise e
|
195 |
+
|
196 |
+
def delete_collection(self, collection_name: Optional[str] = None) -> None:
|
197 |
+
"""
|
198 |
+
Delete a specific collection from the ChromaDB.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
collection_name (Optional[str]): Name of collection to delete.
|
202 |
+
Uses class's collection_name if not provided.
|
203 |
+
"""
|
204 |
+
try:
|
205 |
+
target_collection = collection_name or self.collection_name
|
206 |
+
if not target_collection:
|
207 |
+
raise ValueError("No collection name provided")
|
208 |
+
|
209 |
+
self.client.delete_collection(name=target_collection)
|
210 |
+
print(f"Collection '{target_collection}' deleted successfully.")
|
211 |
+
except Exception as e:
|
212 |
+
print(f"Error deleting collection: {e}")
|
213 |
+
|
SmartSearch/database/vector_store.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
class VectorStore(ABC):
|
6 |
+
@abstractmethod
|
7 |
+
def add_data(self, *args, **kwargs) -> Any:
|
8 |
+
"""
|
9 |
+
Add data to the vector store
|
10 |
+
"""
|
11 |
+
pass
|
12 |
+
|
13 |
+
@abstractmethod
|
14 |
+
def search(self, *args, **kwargs) -> Any:
|
15 |
+
"""
|
16 |
+
Search data from vector store
|
17 |
+
"""
|
18 |
+
pass
|
SmartSearch/embedding_provider.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import List
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class EmbeddingProvider(ABC):
|
6 |
+
"""
|
7 |
+
Abstract class for the llm providers
|
8 |
+
"""
|
9 |
+
@abstractmethod
|
10 |
+
def embed_documents(self, documents: List[str]) -> np.ndarray:
|
11 |
+
"""Embed a list of documents"""
|
12 |
+
pass
|
13 |
+
|
14 |
+
@abstractmethod
|
15 |
+
def embed_query(self, query: str) -> np.ndarray:
|
16 |
+
"""Embed a query"""
|
17 |
+
pass
|
18 |
+
|
SmartSearch/hybrid_search.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Dict, Union, Optional, Any
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from .embedding_provider import EmbeddingProvider
|
6 |
+
from .database.annoydb import AnnoyDB
|
7 |
+
from .keyword_search_provider import KeywordSearchProvider
|
8 |
+
|
9 |
+
class HybridSearch:
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
embedding_provider: EmbeddingProvider,
|
13 |
+
documents: List[str] = None,
|
14 |
+
ann_filepath: Optional[str] = None,
|
15 |
+
semantic_weight: float = 0.7,
|
16 |
+
keyword_weight: float = 0.3
|
17 |
+
) -> None:
|
18 |
+
self.embedding_provider = embedding_provider
|
19 |
+
self.documents = documents
|
20 |
+
|
21 |
+
if ann_filepath and os.path.exists(ann_filepath):
|
22 |
+
self.index = AnnoyDB
|
23 |
+
self.embeddings = self.embedding_provider.embed_documents(documents)
|
24 |
+
|
25 |
+
self.vector_db = AnnoyDB(
|
26 |
+
embedding_dim=self.embeddings.shape[1]
|
27 |
+
)
|
28 |
+
|
29 |
+
for emb, doc in zip(self.embeddings, documents):
|
30 |
+
self.vector_db.add_data(emb, doc)
|
31 |
+
self.vector_db.build()
|
32 |
+
|
33 |
+
# Keyword Search Setup
|
34 |
+
self.keyword_search = KeywordSearchProvider(documents)
|
35 |
+
|
36 |
+
# Weights for hybrid search
|
37 |
+
self.semantic_weight = semantic_weight
|
38 |
+
self.keyword_weight = keyword_weight
|
39 |
+
|
40 |
+
self.documents = documents
|
41 |
+
|
42 |
+
def hybrid_search(self, query: str, top_k: int = 5) -> List[Dict[str, Union[str, float]]]:
|
43 |
+
# Embed query
|
44 |
+
query_embedding = self.embedding_provider.embed_query(query)
|
45 |
+
|
46 |
+
# Perform semantic search
|
47 |
+
semantic_results = self.vector_db.search(query_embedding, top_k)
|
48 |
+
|
49 |
+
# Perform keyword search
|
50 |
+
keyword_results = self.keyword_search.search(query, top_k)
|
51 |
+
|
52 |
+
# Combine results with weighted scoring
|
53 |
+
combined_results = {}
|
54 |
+
|
55 |
+
for result in semantic_results:
|
56 |
+
doc = result['document']
|
57 |
+
combined_results[doc] = {
|
58 |
+
'semantic_score': result['score'] * self.semantic_weight,
|
59 |
+
'keyword_score': 0,
|
60 |
+
'hybrid_score': result['score'] * self.semantic_weight
|
61 |
+
}
|
62 |
+
|
63 |
+
for result in keyword_results:
|
64 |
+
doc = result['document']
|
65 |
+
if doc in combined_results:
|
66 |
+
combined_results[doc]['keyword_score'] = result['score'] * self.keyword_weight
|
67 |
+
combined_results[doc]['hybrid_score'] += result['score'] * self.keyword_weight
|
68 |
+
else:
|
69 |
+
combined_results[doc] = {
|
70 |
+
'semantic_score': 0,
|
71 |
+
'keyword_score': result['score'] * self.keyword_weight,
|
72 |
+
'hybrid_score': result['score'] * self.keyword_weight
|
73 |
+
}
|
74 |
+
|
75 |
+
# Sort and return top results
|
76 |
+
sorted_results = sorted(
|
77 |
+
[
|
78 |
+
{**{'document': doc}, **scores}
|
79 |
+
for doc, scores in combined_results.items()
|
80 |
+
],
|
81 |
+
key=lambda x: x['hybrid_score'],
|
82 |
+
reverse=True
|
83 |
+
)
|
84 |
+
|
85 |
+
return sorted_results[:top_k]
|
86 |
+
|
87 |
+
def set_weights(self, semantic_weight: float, keyword_weight: float):
|
88 |
+
"""
|
89 |
+
Dynamically update search weights.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
semantic_weight: New weight for semantic search
|
93 |
+
keyword_weight: New weight for keyword search
|
94 |
+
"""
|
95 |
+
if not (0 <= semantic_weight <= 1 and 0 <= keyword_weight <= 1):
|
96 |
+
raise ValueError("Weights must be between 0 and 1")
|
97 |
+
|
98 |
+
if not np.isclose(semantic_weight + keyword_weight, 1.0):
|
99 |
+
raise ValueError("Semantic and keyword weights must sum to 1.0")
|
100 |
+
|
101 |
+
self.semantic_weight = semantic_weight
|
102 |
+
self.keyword_weight = keyword_weight
|
SmartSearch/keyword_search_provider.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Union
|
2 |
+
|
3 |
+
class KeywordSearchProvider:
|
4 |
+
def __init__(self, documents: List[str]):
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
self.vectorizer = TfidfVectorizer()
|
7 |
+
self.tfidf_matrix = self.vectorizer.fit_transform(documents)
|
8 |
+
self.documents = documents
|
9 |
+
|
10 |
+
def search(self, query: str, top_k: int = 5) -> List[Dict[str, Union[str, float]]]:
|
11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
query_vector = self.vectorizer.transform([query])
|
13 |
+
similarities = cosine_similarity(query_vector, self.tfidf_matrix)[0]
|
14 |
+
|
15 |
+
# Get top-k results
|
16 |
+
top_indices = similarities.argsort()[-top_k:][::-1]
|
17 |
+
results = [
|
18 |
+
{
|
19 |
+
"document": self.documents[idx],
|
20 |
+
"score": similarities[idx]
|
21 |
+
} for idx in top_indices
|
22 |
+
]
|
23 |
+
|
24 |
+
return results
|
SmartSearch/providers/OpenAIEmbedding.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Union, Optional
|
2 |
+
import tiktoken
|
3 |
+
from ..embedding_provider import EmbeddingProvider
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class OpenAIEmbedding(EmbeddingProvider):
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
api_key: Optional[str] = None,
|
10 |
+
model: str = "text-embedding-3-small",
|
11 |
+
max_tokens: int = 8191
|
12 |
+
) -> None:
|
13 |
+
"""Initialize OpenAI embedding provider
|
14 |
+
|
15 |
+
Args:
|
16 |
+
model_name (str, optional): Name of the embedding model. Default to "text-embedding-3-small"
|
17 |
+
more info: https://platform.openai.com/docs/models#embeddings
|
18 |
+
api_key: api_key for OpenAI
|
19 |
+
"""
|
20 |
+
from openai import OpenAI
|
21 |
+
|
22 |
+
self.client = OpenAI(api_key=api_key)
|
23 |
+
self.model = model
|
24 |
+
self.max_tokens = max_tokens
|
25 |
+
self.tokenizer = tiktoken.encoding_for_model(model)
|
26 |
+
|
27 |
+
def _trancated_text(self, text: str) -> str:
|
28 |
+
"""Truncate text into maximum token length
|
29 |
+
|
30 |
+
Args:
|
31 |
+
text (str): Input text
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
str: Truncated text
|
35 |
+
"""
|
36 |
+
tokens = self.tokenizer.encode(text)
|
37 |
+
truncated_tokens = tokens[:self.max_tokens]
|
38 |
+
return self.tokenizer.decode(truncated_tokens)
|
39 |
+
|
40 |
+
def embed_documents(
|
41 |
+
self,
|
42 |
+
documents: List[str],
|
43 |
+
batch_size: int = 100
|
44 |
+
) -> np.array:
|
45 |
+
"""Embed a list of documents
|
46 |
+
|
47 |
+
Args:
|
48 |
+
documents (List[str]): List of documents to embed
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
np.array: embeddings of documents
|
52 |
+
"""
|
53 |
+
truncated_docs = [self._trancated_text(doc) for doc in documents]
|
54 |
+
|
55 |
+
embeddings = []
|
56 |
+
for i in range(0, len(truncated_docs), batch_size):
|
57 |
+
batch = truncated_docs[i: i+batch_size]
|
58 |
+
|
59 |
+
response = self.client.embeddings.create(
|
60 |
+
input=batch,
|
61 |
+
model=self.model
|
62 |
+
)
|
63 |
+
batch_embeddings = [
|
64 |
+
embed.embedding for embed in response.data
|
65 |
+
]
|
66 |
+
embeddings.extend(batch_embeddings)
|
67 |
+
|
68 |
+
return np.array(embeddings)
|
69 |
+
|
70 |
+
def embed_query(self, query):
|
71 |
+
truncated_query = self._trancated_text(query)
|
72 |
+
|
73 |
+
response = self.client.embeddings.create(
|
74 |
+
input=[truncated_query],
|
75 |
+
model=self.model
|
76 |
+
)
|
77 |
+
return np.array(response.data[0].embedding)
|
78 |
+
|
79 |
+
def get_embedding_info(self) -> Dict[str, Union[str, int]]:
|
80 |
+
"""
|
81 |
+
Get information about the current embedding configuration
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
Dict: Embedding configuration details
|
85 |
+
"""
|
86 |
+
return {
|
87 |
+
"model": self.model,
|
88 |
+
"max_tokens": self.max_tokens,
|
89 |
+
"batch_size": 100, # Default batch size
|
90 |
+
}
|
91 |
+
|
92 |
+
def list_available_models(self) -> List[str]:
|
93 |
+
"""
|
94 |
+
List available OpenAI embedding models
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
List[str]: Available embedding model names
|
98 |
+
"""
|
99 |
+
return [
|
100 |
+
"text-embedding-ada-002", # Most common
|
101 |
+
"text-embedding-3-small", # Newer, more efficient
|
102 |
+
"text-embedding-3-large" # Highest quality
|
103 |
+
]
|
104 |
+
|
105 |
+
def estimate_cost(self, num_documents: int) -> float:
|
106 |
+
"""
|
107 |
+
Estimate embedding cost
|
108 |
+
|
109 |
+
Args:
|
110 |
+
num_documents (int): Number of documents to embed
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
float: Estimated cost in USD
|
114 |
+
"""
|
115 |
+
# Pricing as of 2024 (subject to change)
|
116 |
+
pricing = {
|
117 |
+
"text-embedding-ada-002": 0.0001 / 1000, # $0.0001 per 1000 tokens
|
118 |
+
"text-embedding-3-small": 0.00006 / 1000,
|
119 |
+
"text-embedding-3-large": 0.00013 / 1000
|
120 |
+
}
|
121 |
+
|
122 |
+
# Estimate tokens (assuming ~100 tokens per document)
|
123 |
+
total_tokens = num_documents * 100
|
124 |
+
|
125 |
+
return total_tokens * pricing.get(self.model, pricing["text-embedding-ada-002"])
|
SmartSearch/providers/SentenceTransformerEmbedding.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Union
|
2 |
+
from ..embedding_provider import EmbeddingProvider
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class SentenceTransformerEmbedding(EmbeddingProvider):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
model_name: str = "sentence-transformers/all-MiniLM-L6-v2",
|
9 |
+
device: str = None,
|
10 |
+
batch_size: int = 32,
|
11 |
+
normalize_embeddings: bool = True
|
12 |
+
) -> None:
|
13 |
+
"""Initialize sentence transformer embedding provider
|
14 |
+
|
15 |
+
Args:
|
16 |
+
model_name (str, optional): Name of the sentence tranformer model. Defaults to "sentence-transformers/all-MiniLM-L6-v2".
|
17 |
+
"""
|
18 |
+
from sentence_transformers import SentenceTransformer
|
19 |
+
|
20 |
+
if device is None:
|
21 |
+
import torch
|
22 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
|
24 |
+
self.model = SentenceTransformer(model_name, device=device)
|
25 |
+
self.model_name = model_name
|
26 |
+
self.batch_size = batch_size
|
27 |
+
self.normalize_embeddings = normalize_embeddings
|
28 |
+
|
29 |
+
def embed_documents(self, documents: List[str]) -> np.ndarray:
|
30 |
+
"""Embed a list of documents
|
31 |
+
|
32 |
+
Args:
|
33 |
+
documents (List[str]): List of documents to embed
|
34 |
+
"""
|
35 |
+
return self.model.encode(
|
36 |
+
documents,
|
37 |
+
batch_size=self.batch_size,
|
38 |
+
normalize_embeddings=self.normalize_embeddings
|
39 |
+
)
|
40 |
+
|
41 |
+
def embed_query(self, query: str) -> np.ndarray:
|
42 |
+
"""Embed a single query
|
43 |
+
|
44 |
+
Args:
|
45 |
+
query (str): Query to embed
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
np.ndarray: Embedding vector
|
49 |
+
"""
|
50 |
+
return self.model.encode(
|
51 |
+
query,
|
52 |
+
normalize_embeddings=self.normalize_embeddings
|
53 |
+
)
|
54 |
+
|
55 |
+
def get_model_info(self) -> Dict[str, Union[str, int]]:
|
56 |
+
"""
|
57 |
+
Retrieve information about the current embedding model
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
Dict: Model information
|
61 |
+
"""
|
62 |
+
return {
|
63 |
+
"model_name": self.model_name,
|
64 |
+
"device": self.device,
|
65 |
+
"batch_size": self.batch_size,
|
66 |
+
"normalize_embeddings": self.normalize_embeddings,
|
67 |
+
"embedding_dim": self.model.get_sentence_embedding_dimension()
|
68 |
+
}
|
69 |
+
|
70 |
+
def list_available_models(self) -> List[str]:
|
71 |
+
"""
|
72 |
+
List some popular Sentence Transformer models
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
List[str]: Available model names
|
76 |
+
"""
|
77 |
+
popular_models = [
|
78 |
+
"sentence-transformers/all-MiniLM-L6-v2", # Small and fast
|
79 |
+
"sentence-transformers/all-mpnet-base-v2", # High performance
|
80 |
+
"sentence-transformers/all-distilroberta-v1", # Lightweight
|
81 |
+
"sentence-transformers/multi-qa-MiniLM-L6-cos-v1", # Question Answering
|
82 |
+
"sentence-transformers/multi-qa-mpnet-base-cos-v1", # Multilingual QA
|
83 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" # Multilingual
|
84 |
+
]
|
85 |
+
return popular_models
|
SmartSearch/providers/__init__.py
ADDED
File without changes
|
SmartSearch/search_manager.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from embedding_provider import EmbeddingProvider
|
4 |
+
from database.annoydb import AnnoyDB
|
5 |
+
|
6 |
+
class SearchManager:
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
embedding_provider: EmbeddingProvider,
|
10 |
+
documents: List[str],
|
11 |
+
semantic_weight: float = 0.7,
|
12 |
+
keyword_weight: float = 0.3
|
13 |
+
) -> None:
|
14 |
+
"""Smart Search Manager
|
15 |
+
|
16 |
+
Args:
|
17 |
+
embedding_provider (EmbeddingProvider): embedding provider
|
18 |
+
documents (List[str]): list of documents
|
19 |
+
semantic_weight (float, optional): _description_. Defaults to 0.7.
|
20 |
+
keyword_weight (float, optional): _description_. Defaults to 0.3.
|
21 |
+
"""
|
22 |
+
self.embedding_provider = embedding_provider
|
23 |
+
self.semantic_embeddings = embedding_provider.embed_documents(documents)
|
24 |
+
|
25 |
+
# Vector Database Setup
|
26 |
+
self.vector_db = AnnoyDB(
|
27 |
+
embedding_dim=self.semantic_embeddings.shape[1]
|
28 |
+
)
|
29 |
+
for emb, doc in zip(self.semantic_embeddings, documents):
|
30 |
+
self.vector_db.add_item(emb, doc)
|
31 |
+
self.vector_db.build()
|
32 |
+
|
33 |
+
# Keyword Search Setup
|
34 |
+
self.keyword_search = KeywordSearchProvider(documents)
|
35 |
+
|
36 |
+
# Weights for hybrid search
|
37 |
+
self.semantic_weight = semantic_weight
|
38 |
+
self.keyword_weight = keyword_weight
|
39 |
+
|
40 |
+
self.documents = documents
|
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from dataclasses import asdict
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from SmartSearch.database.chromadb import ChromaDB
|
7 |
+
from SmartSearch.providers.SentenceTransformerEmbedding import SentenceTransformerEmbedding
|
8 |
+
from utils import combine_metadata_with_distance
|
9 |
+
st_chroma = ChromaDB(
|
10 |
+
embedding_function=SentenceTransformerEmbedding(model_name='all-mpnet-base-v2'),
|
11 |
+
collection_name="novel_mockup_collection"
|
12 |
+
)
|
13 |
+
|
14 |
+
# Function to search for products
|
15 |
+
def search_novels(query, k):
|
16 |
+
result = st_chroma.search(query_text=query, n_results=k)
|
17 |
+
|
18 |
+
result = combine_metadata_with_distance(result['metadatas'], result['distances'])
|
19 |
+
result = pd.DataFrame(result)
|
20 |
+
return result
|
21 |
+
|
22 |
+
with gr.Blocks() as demo:
|
23 |
+
with gr.Row():
|
24 |
+
query = gr.Textbox(label="Search Query", placeholder="write a query to find the courses")
|
25 |
+
with gr.Row():
|
26 |
+
# search_type = gr.Dropdown(label="Search Type", choices=['semantic', 'keyword', 'hybrid'], value='hybrid')
|
27 |
+
k = gr.Number(label="Items Count", value=10)
|
28 |
+
# rerank = gr.Checkbox(value=True, label="Rerank")
|
29 |
+
results = gr.Dataframe(label="Search Results")
|
30 |
+
|
31 |
+
search_button = gr.Button("Search", variant='primary')
|
32 |
+
search_button.click(fn=search_novels, inputs=[query, k], outputs=results)
|
33 |
+
|
34 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-i https://pypi.org/simple
|
2 |
+
aiofiles==23.2.1; python_version >= '3.7'
|
3 |
+
annotated-types==0.7.0; python_version >= '3.8'
|
4 |
+
anyio==4.8.0; python_version >= '3.9'
|
5 |
+
asgiref==3.8.1; python_version >= '3.8'
|
6 |
+
backoff==2.2.1; python_version >= '3.7' and python_version < '4.0'
|
7 |
+
bcrypt==4.2.1; python_version >= '3.7'
|
8 |
+
build==1.2.2.post1; python_version >= '3.8'
|
9 |
+
cachetools==5.5.0; python_version >= '3.7'
|
10 |
+
certifi==2024.12.14; python_version >= '3.6'
|
11 |
+
charset-normalizer==3.4.1; python_version >= '3.7'
|
12 |
+
chroma-hnswlib==0.7.6
|
13 |
+
chromadb==0.6.2; python_version >= '3.9'
|
14 |
+
click==8.1.8; python_version >= '3.7'
|
15 |
+
coloredlogs==15.0.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
|
16 |
+
deprecated==1.2.15; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
|
17 |
+
durationpy==0.9
|
18 |
+
exceptiongroup==1.2.2; python_version >= '3.7'
|
19 |
+
fastapi==0.115.6; python_version >= '3.8'
|
20 |
+
ffmpy==0.5.0; python_version >= '3.8' and python_version < '4.0'
|
21 |
+
filelock==3.16.1; python_version >= '3.8'
|
22 |
+
flatbuffers==24.12.23
|
23 |
+
fsspec==2024.12.0; python_version >= '3.8'
|
24 |
+
google-auth==2.37.0; python_version >= '3.7'
|
25 |
+
googleapis-common-protos==1.66.0; python_version >= '3.7'
|
26 |
+
gradio==5.11.0; python_version >= '3.10'
|
27 |
+
gradio-client==1.5.3; python_version >= '3.10'
|
28 |
+
grpcio==1.69.0; python_version >= '3.8'
|
29 |
+
h11==0.14.0; python_version >= '3.7'
|
30 |
+
httpcore==1.0.7; python_version >= '3.8'
|
31 |
+
httptools==0.6.4; python_full_version >= '3.8.0'
|
32 |
+
httpx==0.28.1; python_version >= '3.8'
|
33 |
+
huggingface-hub==0.27.1; python_full_version >= '3.8.0'
|
34 |
+
humanfriendly==10.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
|
35 |
+
idna==3.10; python_version >= '3.6'
|
36 |
+
importlib-metadata==8.5.0; python_version >= '3.8'
|
37 |
+
importlib-resources==6.5.2; python_version >= '3.9'
|
38 |
+
jinja2==3.1.5; python_version >= '3.7'
|
39 |
+
joblib==1.4.2; python_version >= '3.8'
|
40 |
+
kubernetes==31.0.0; python_version >= '3.6'
|
41 |
+
markdown-it-py==3.0.0; python_version >= '3.8'
|
42 |
+
markupsafe==2.1.5; python_version >= '3.7'
|
43 |
+
mdurl==0.1.2; python_version >= '3.7'
|
44 |
+
mmh3==5.0.1; python_version >= '3.8'
|
45 |
+
monotonic==1.6
|
46 |
+
mpmath==1.3.0
|
47 |
+
networkx==3.4.2; python_version >= '3.10'
|
48 |
+
numpy==2.2.1; python_version >= '3.10'
|
49 |
+
oauthlib==3.2.2; python_version >= '3.6'
|
50 |
+
onnxruntime==1.20.1
|
51 |
+
opentelemetry-api==1.29.0; python_version >= '3.8'
|
52 |
+
opentelemetry-exporter-otlp-proto-common==1.29.0; python_version >= '3.8'
|
53 |
+
opentelemetry-exporter-otlp-proto-grpc==1.29.0; python_version >= '3.8'
|
54 |
+
opentelemetry-instrumentation==0.50b0; python_version >= '3.8'
|
55 |
+
opentelemetry-instrumentation-asgi==0.50b0; python_version >= '3.8'
|
56 |
+
opentelemetry-instrumentation-fastapi==0.50b0; python_version >= '3.8'
|
57 |
+
opentelemetry-proto==1.29.0; python_version >= '3.8'
|
58 |
+
opentelemetry-sdk==1.29.0; python_version >= '3.8'
|
59 |
+
opentelemetry-semantic-conventions==0.50b0; python_version >= '3.8'
|
60 |
+
opentelemetry-util-http==0.50b0; python_version >= '3.8'
|
61 |
+
orjson==3.10.14; python_version >= '3.8'
|
62 |
+
overrides==7.7.0; python_version >= '3.6'
|
63 |
+
packaging==24.2; python_version >= '3.8'
|
64 |
+
pandas==2.2.3; python_version >= '3.9'
|
65 |
+
pillow==11.1.0; python_version >= '3.9'
|
66 |
+
posthog==3.7.5
|
67 |
+
protobuf==5.29.3; python_version >= '3.8'
|
68 |
+
pyasn1==0.6.1; python_version >= '3.8'
|
69 |
+
pyasn1-modules==0.4.1; python_version >= '3.8'
|
70 |
+
pydantic==2.10.4; python_version >= '3.8'
|
71 |
+
pydantic-core==2.27.2; python_version >= '3.8'
|
72 |
+
pydub==0.25.1
|
73 |
+
pygments==2.19.1; python_version >= '3.8'
|
74 |
+
pypika==0.48.9
|
75 |
+
pyproject-hooks==1.2.0; python_version >= '3.7'
|
76 |
+
python-dateutil==2.9.0.post0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'
|
77 |
+
python-dotenv==1.0.1; python_version >= '3.8'
|
78 |
+
python-multipart==0.0.20; python_version >= '3.8'
|
79 |
+
pytz==2024.2
|
80 |
+
pyyaml==6.0.2; python_version >= '3.8'
|
81 |
+
regex==2024.11.6; python_version >= '3.8'
|
82 |
+
requests==2.32.3; python_version >= '3.8'
|
83 |
+
requests-oauthlib==2.0.0; python_version >= '3.4'
|
84 |
+
rich==13.9.4; python_full_version >= '3.8.0'
|
85 |
+
rsa==4.9; python_version >= '3.6' and python_version < '4'
|
86 |
+
ruff==0.8.6; python_version >= '3.7'
|
87 |
+
safehttpx==0.1.6; python_version >= '3.10'
|
88 |
+
safetensors==0.5.2; python_version >= '3.7'
|
89 |
+
scikit-learn==1.6.0; python_version >= '3.9'
|
90 |
+
scipy==1.15.0; python_version >= '3.10'
|
91 |
+
semantic-version==2.10.0; python_version >= '2.7'
|
92 |
+
sentence-transformers==3.3.1; python_version >= '3.9'
|
93 |
+
shellingham==1.5.4; python_version >= '3.7'
|
94 |
+
six==1.17.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'
|
95 |
+
sniffio==1.3.1; python_version >= '3.7'
|
96 |
+
starlette==0.41.3; python_version >= '3.8'
|
97 |
+
sympy==1.13.1; python_version >= '3.8'
|
98 |
+
tenacity==9.0.0; python_version >= '3.8'
|
99 |
+
threadpoolctl==3.5.0; python_version >= '3.8'
|
100 |
+
tokenizers==0.21.0; python_version >= '3.7'
|
101 |
+
tomli==2.2.1; python_version >= '3.8'
|
102 |
+
tomlkit==0.13.2; python_version >= '3.8'
|
103 |
+
torch==2.5.1; python_full_version >= '3.8.0'
|
104 |
+
tqdm==4.67.1; python_version >= '3.7'
|
105 |
+
transformers==4.47.1; python_full_version >= '3.9.0'
|
106 |
+
typer==0.15.1; python_version >= '3.7'
|
107 |
+
typing-extensions==4.12.2; python_version >= '3.8'
|
108 |
+
tzdata==2024.2; python_version >= '2'
|
109 |
+
urllib3==2.3.0; python_version >= '3.9'
|
110 |
+
uvicorn[standard]==0.34.0; python_version >= '3.9'
|
111 |
+
uvloop==0.21.0; python_full_version >= '3.8.0'
|
112 |
+
watchfiles==1.0.3; python_version >= '3.9'
|
113 |
+
websocket-client==1.8.0; python_version >= '3.8'
|
114 |
+
websockets==14.1; python_version >= '3.9'
|
115 |
+
wrapt==1.17.0; python_version >= '3.8'
|
116 |
+
zipp==3.21.0; python_version >= '3.9'
|
utils.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def combine_metadata_with_distance(metadatas, distances):
|
2 |
+
# Flatten the nested lists if they are nested
|
3 |
+
metadatas = metadatas[0] if isinstance(metadatas[0], list) else metadatas
|
4 |
+
distances = distances[0] if isinstance(distances[0], list) else distances
|
5 |
+
print(metadatas)
|
6 |
+
if len(metadatas) != len(distances):
|
7 |
+
raise ValueError("Number of metadata entries must match the number of distances")
|
8 |
+
|
9 |
+
combined_result = []
|
10 |
+
for metadata, distance in zip(metadatas, distances):
|
11 |
+
new_metadata = {
|
12 |
+
'title': metadata.get('title', ''),
|
13 |
+
'description': metadata.get('description', ''),
|
14 |
+
'price': metadata.get('price', ''),
|
15 |
+
'totalRatings': metadata.get('totalRatings', 0),
|
16 |
+
'reviewSummary': metadata.get('reviewSummary', ''),
|
17 |
+
'triggerWarning': metadata.get('triggerWarning', ''),
|
18 |
+
'distance': distance
|
19 |
+
}
|
20 |
+
combined_result.append(new_metadata)
|
21 |
+
|
22 |
+
combined_result.sort(key=lambda x: x['distance'])
|
23 |
+
|
24 |
+
return combined_result
|