italoribeiro commited on
Commit
3bc7eb3
·
1 Parent(s): 5c10777

Add application

Browse files
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
app/__init__.py ADDED
File without changes
app/controller/__init__.py ADDED
File without changes
app/controller/classify.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from model.argq import ArgqClassifier, get_model
2
+ from fastapi import Depends
3
+
4
+ class ClassifyController:
5
+ async def get_text_classification(self, text: str, model=Depends(get_model)):
6
+ print(dir(model))
7
+ return 0
app/main.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI
2
+ from pydantic import BaseModel, Field
3
+ from fastapi.middleware.cors import CORSMiddleware
4
+ import logging
5
+ from model.argq import ArgqClassifier
6
+ from datetime import datetime
7
+ import firebase_admin
8
+ from firebase_admin import credentials, firestore
9
+ import uvicorn
10
+ from os import getenv, path
11
+
12
+
13
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
14
+
15
+ app = FastAPI(title="ArgQ Backend", version="0.0.1")
16
+
17
+ app.add_middleware(
18
+ CORSMiddleware,
19
+ allow_origins=["*"],
20
+ allow_credentials=True,
21
+ allow_methods=["*"],
22
+ allow_headers=["*"],
23
+ )
24
+
25
+ logging.info("Starting application")
26
+ cred_file_path = path.join(path.dirname(__file__), "../credentials/firebase-adminsdk.json")
27
+ cred = credentials.Certificate(cred_file_path)
28
+ firebase_admin.initialize_app(cred)
29
+
30
+ db = firestore.client()
31
+
32
+ logging.info("Loading model..")
33
+ model = ArgqClassifier()
34
+ logging.info("Model loaded")
35
+
36
+ class Tweet(BaseModel):
37
+ text: str
38
+
39
+ class TextWithAspects(BaseModel):
40
+ tweet: Tweet
41
+ aspects: list = ["quality", "clarity", "organization", "credibility", "emotional_polarity", "emotional_intensity"]
42
+
43
+ class FeedbackItem(BaseModel):
44
+ text: str
45
+ timestamp: datetime = Field(default_factory=datetime.utcnow)
46
+
47
+ @app.post("/argq/classify")
48
+ async def get_text_classification(tweet: Tweet):
49
+ classification = await model.classify_text(tweet.text)
50
+ return {
51
+ "classification": classification
52
+ }
53
+
54
+ @app.post("/argq/classify/aspects")
55
+ async def get_text_classification_by_aspects(request: TextWithAspects):
56
+ classification = {
57
+ aspect: await model.classify_text_by_aspect(request.tweet.text, aspect) for aspect in request.aspects
58
+ }
59
+ return {
60
+ "classification": classification
61
+ }
62
+
63
+ @app.post("/argq/feedback")
64
+ async def post_feedback(item: FeedbackItem):
65
+ feedback_data = item.dict()
66
+ feedback_data['timestamp'] = feedback_data['timestamp'].isoformat()
67
+ doc_ref = db.collection('feedback').document()
68
+ doc_ref.set(feedback_data)
69
+ return {"status": "success", "feedback_received": feedback_data}
70
+
71
+ if __name__ == "__main__":
72
+ uvicorn.run(app, host="0.0.0.0", port=int(getenv("PORT", 8000)), reload=True)
credentials/firebase-adminsdk.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "service_account",
3
+ "project_id": "argq-feedback",
4
+ "private_key_id": "677e4d4261a9a96bd6f3330c6dcc47a0ecfd2061",
5
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCsFvkzZdPae+Qc\n5o4xTCgp+YATrE2005hjcHIKkCdA/QdqPGzw9V84wqO9R2lidUqNtDJU80dItdF9\nCmQY96KPrGhTyvGOXxSJArb+7o6JvAUpDmxAdLKAp20Kef5Zsm1TKmqRW2AJKBbc\nw3sYbTRBaGYfJYBdoIxVoQh7CneJbV0+y9BOUfQVBCLHdYmxDxzqNCngcLUhdh9r\n5yTp20xgTQJHDbBprgsFWMqfwfVwUy18xW1bFeyV8lQNLzb5rd0niNZyDz2jkdiT\ndYsw0d5TpWoe/WlY6lHKun0QwqABIcJCjTkleHTOMNPYeDIUp8YbW7mb19HjwMzB\nTubDxprfAgMBAAECggEARBMub0OXw7UAruIRW7T5qmkVXjLp5l9Rx/xiUIVn0dCG\nT2Mp4UPfcC+m4ChQqu8lF9sxkeNOzpeGEEW9BRdoyhb0ijkcxyobkHtvcndiEWA8\nVlprPjArsLMKcnuBv2/SyXRdBbU0z0p5iMkXd7kzU7B9vVJzbhYljXYPScUBNm5S\nu6AxHUIbMaHi60TWCPpvTw8v3LpBGS3AQjFsxjhhR/usiEZ8ZQaPVVPtqE0l1Ehw\n3UlxAmvKB0hu7jcsEWi+oxtYow8iZlSlkO9wClHcqyiXzleweVQijpt20AwHByB5\n/CQh16mmP48jLPJWU46ZBseaHuNsPQE27nxydcHC4QKBgQDqvwwgPQBPXMWfiQPm\nmCmn7+llKg/G01wgcL4D/9W97KB/zRcaD6lkMbvTzx+o9Lzoq0T4aeW01klUDioc\nwmT70zwHy5S8gIWdlotj1Pj/BCoDhbg2UE1jswOTUZDbST5Gwn6sGREyl0xgQunz\nV+wa4bx2oIxSha0FWnzlCuqYrwKBgQC7q6wCmvWWbH67XCYzpN/igx66cZIta2Qm\ndeA7++m8EbAynGBMb1aEzLpZ55q0MRwbs/vEs3G4wA96FG1YnjCtT6i7lpet8YQh\nGcxF+PkupyqOtcsSVqp/ufHZw7+JsjIiABIL+B2xh3czfLI0r5c3PmUuFQDLbXek\nSlaQfNRM0QKBgFZwKsLkM20FuC9agHk0poIUMVjy+AQ6Z736Rb2rQsVAkIj+t/b8\ntV8TgRopNns8QyNZjXf7Zn4EOdQdsxwL6KthyMUGDaqrmIfCm2kTTux4WBAb+Qzm\n3NhNXo+shS559diQXZx5Tn/WfmUjvonAYkwzuvXjgEgSuPczrrGYJ3I5AoGBALbS\nkosnMkAMCZm0N3LwFzquyWyP3vtoNvRQuNU2n4ibIq7rL9TGUd6lIpUaztbjUKKc\nP5Rry0lTsMAYzj0aPglYJOQ53CGTukgUva8c0ILmTssfxmhjDU3IcxbVXu5hLf15\nXBtU5nhfo3wA6gnxVLp4ilDOHSwPxBHEaXfwY1FBAoGBAJKSmH7XcwGxscoTZ1Ln\nM/iq0K3Vp15tm5dOrtjwD7f7kKV+i8eiOhNxqNaqD6Wor4Jk9iYfbUP+KiKxdNYU\nyeRzKXux5aZTLVwmEN3NalDY6W7O2+97GpxNg8YYyFPPKmtoBkqiSgp4Xg+rJww9\nJwLmjJJuRkIGd50UeDrD4k98\n-----END PRIVATE KEY-----\n",
6
+ "client_email": "[email protected]",
7
+ "client_id": "109125477852325451232",
8
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
9
+ "token_uri": "https://oauth2.googleapis.com/token",
10
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
11
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/firebase-adminsdk-yiy7e%40argq-feedback.iam.gserviceaccount.com",
12
+ "universe_domain": "googleapis.com"
13
+ }
model/__init__.py ADDED
File without changes
model/argq.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import torch
3
+ from transformers import AutoTokenizer
4
+ import logging
5
+
6
+ class ArgqClassifier:
7
+ def __init__(self):
8
+ self.tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-base-portuguese-cased', do_lower_case=False)
9
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
+ self.device = torch.device(device)
11
+ logging.info(f"Version: {torch.__version__}")
12
+ logging.info(f"Device being used: {device}")
13
+ self.models = {
14
+ 'quality': pickle.load(open('model_cpu.sav', 'rb')),
15
+ 'clarity': pickle.load(open('model_cla_cpu.sav', 'rb')),
16
+ 'organization': pickle.load(open('model_org_cpu.sav', 'rb')),
17
+ 'credibility': pickle.load(open('model_cre_cpu.sav', 'rb')),
18
+ 'emotional_polarity': pickle.load(open('model_aemp_cpu.sav', 'rb')),
19
+ 'emotional_intensity': pickle.load(open('model_aemi_cpu.sav', 'rb'))
20
+ }
21
+ self.max_length = 180
22
+
23
+ async def classify_text(self, text):
24
+ inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length).to(self.device)
25
+ model = self.models["quality"]
26
+ output = model(**inputs)
27
+
28
+ pred_labels = torch.argmax(output.logits, 1)
29
+ y_pred = pred_labels[0]
30
+ return y_pred.item()
31
+
32
+ async def classify_text_by_aspect(self, text, aspect):
33
+ inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length).to(self.device)
34
+ model = self.models[aspect]
35
+ output = model(**inputs)
36
+
37
+ pred_labels = torch.argmax(output.logits, 1)
38
+ y_pred = pred_labels[0]
39
+ return y_pred.item()
model_aemi_cpu.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dd8192ac2c157bcb6d4f097403c9623ba0684445fe9eecfcfce0483b79e7325
3
+ size 435809358
model_aemp_cpu.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8959d5dc345310146c272300d41c55163d3033ce2b72da403ffd9c01fd82d3e0
3
+ size 435809358
model_cla_cpu.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:736da3bd00aa6746deffa44edba23dab150d873e2110f8851bdbacb0e0b1c4db
3
+ size 435809358
model_cpu.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40212e8cc49e8d0f42fa579f1b4d28af3e9f298b51240271ee02bb103cfac8ed
3
+ size 435809764
model_cre_cpu.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4b37a4b17145fe67bf774725e5a6c2f88bfbc1c89f4dfc7b97fdbeb69b5798
3
+ size 435809358
model_org_cpu.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:320091e7abd4a91dc34fb4b6c043abf3b8038605d401cdf4639441ab80b457c6
3
+ size 435809358
requirements.txt ADDED
Binary file (1.95 kB). View file
 
test/test_main.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi.testclient import TestClient
2
+ from app.main import app
3
+
4
+ client = TestClient(app)
5
+
6
+ TEST_TEXTS = [
7
+ "mano eu não entendo a cabeça da esquerda, vcs são doentes, projetos que vão ajudar a economia do Brasil, até mesmo pra ajudar pagar dividas que o próprio auxilio emergencial vai criar... vcs são doentes???",
8
+ "O mais difícil de entender é que especialistas dizem que a aprovação não era benéfica e ainda assim eles aprovam! Oq esses deputados entendem dessa questão? Tipo assim, não votem a favor pq é ruim para o povo, aí ligam o fodasse e fazem assim mesmo, que porra é essa?",
9
+ "Você votou? Provavelmente votou NÃO. Então a pergunta é: você está “tistinho” porque perdeu? Se a autonomia não fosse aprovada você estaria aqui se manifestando contra? Ou estaria exaltando os deputados que entenderam que o BC precisa ter um freio? Totalmente sem noção!",
10
+ "Rodrigo Maia, você hoje já falou que se arrepende do apoio a Bolsonaro no segundo turno. Parabéns por admitir isto. Agora... quando virá o arrependimento de não ter ao menos colocado para a frente algum dos pedidos de Impeachment?",
11
+ "Vc propôs essa emenda, esperando que passe ou apenas para constar? Com a postagem do seu presidente da câmara, que até já considerou que o Dep. Daniel Silveira contrapôs à democracia, mesmo não tendo sido julgado e condenado pelo STF, espera que essa sua proposta tenha sucesso? https://t.co/uJjvgcwqEt",
12
+ "Desculpe senhora deputada, cansei de vcs ! Ninguém faz nada, ninguém! Vcs brincam com o povo! Se hoje um governador maluco fizer um forno, como foi feito na Alemanha e começar a matar as pessoas,tudo bem , os caras que jamais devem ser citados, deram o direito !",
13
+ "Caro Deputado, não sei se irá ler meu posicionamento. Mas, calaram a voz de uma Deputado q foi eleito para PODER FALAR POR NÓS! Um PODER, calou a não a voz do Daniel, calou foi a NOSSA! Ontem foi deputado pondo mordaça da boca de outro deputado e traçando o fim do CONGRESSO.",
14
+ "Está na hora de exigir o respeito com seriedade, impeachment se faz mais que necessário, ele está tentando rebaixar a Câmara dos Deputados a seu serviço, uma ação judicial enérgica imediata. Ação do Arthur Lira agora, se deixar passar perderá a força",
15
+ ]
16
+
17
+ TEST_TEXTS_EXPECTED_RESULTS = [0, 1, 0, 2, 2, 2, 2, 2]
18
+
19
+ TEST_TEXTS_EXPECTED_RESULTS_FOR_CLARITY = [2, 1, 2, 1, 2, 2, 2, 2]
20
+
21
+ class TestMain:
22
+ def test_get_text_classification(self):
23
+ for i, text in enumerate(TEST_TEXTS):
24
+ tweet = {"text": text}
25
+ response = client.post("/argq/classify", json=tweet)
26
+ assert response.status_code == 200
27
+ assert response.json() == {"classification": TEST_TEXTS_EXPECTED_RESULTS[i]}
28
+
29
+ def test_get_text_clarity_classification(self):
30
+ for i, text in enumerate(TEST_TEXTS):
31
+ request = {
32
+ "tweet":{
33
+ "text": text
34
+ },
35
+ "aspects": [
36
+ "clarity"
37
+ ]
38
+ }
39
+ output = {"classification": {"clarity": TEST_TEXTS_EXPECTED_RESULTS_FOR_CLARITY[i]}}
40
+ response = client.post("/argq/classify/aspects", json=request)
41
+ assert response.status_code == 200
42
+ assert response.json() == output
43
+
44
+ def test_get_text_all_aspects_classification(self):
45
+ text = TEST_TEXTS[0]
46
+ request = {
47
+ "tweet":{
48
+ "text": text
49
+ }
50
+ }
51
+ output = {
52
+ "classification": {
53
+ "quality": 0,
54
+ "clarity": 2,
55
+ "organization": 1,
56
+ "credibility": 0,
57
+ "emotional_polarity": 0,
58
+ "emotional_intensity": 1
59
+ }
60
+ }
61
+ response = client.post("/argq/classify/aspects", json=request)
62
+ assert response.status_code == 200
63
+ assert response.json() == output