Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,76 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
)
|
15 |
-
|
16 |
-
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import supervision as sv
|
5 |
+
from ultralytics import YOLO
|
6 |
+
|
7 |
+
# Define paths
|
8 |
+
HOME = os.getcwd()
|
9 |
+
MODEL_PATH = "./best.pt"
|
10 |
+
|
11 |
+
# Load the YOLO model
|
12 |
+
model = YOLO(MODEL_PATH)
|
13 |
+
|
14 |
+
# Initialize annotators
|
15 |
+
box_annotator = sv.BoxAnnotator()
|
16 |
+
label_annotator = sv.LabelAnnotator()
|
17 |
+
|
18 |
+
# Define the confidence threshold
|
19 |
+
CONFIDENCE_THRESHOLD = 0.6
|
20 |
+
|
21 |
+
# Define the callback function for processing each video frame
|
22 |
+
def callback(frame: np.ndarray, _: int) -> np.ndarray:
|
23 |
+
# Perform detection on the frame
|
24 |
+
results = model(frame)[0]
|
25 |
+
detections = sv.Detections.from_ultralytics(results)
|
26 |
+
|
27 |
+
# Filter detections based on confidence threshold
|
28 |
+
detections_filtered = detections[detections.confidence >
|
29 |
+
CONFIDENCE_THRESHOLD]
|
30 |
+
|
31 |
+
# Create labels for filtered detections
|
32 |
+
labels = [
|
33 |
+
f"{model.model.names[class_id]} {confidence:.2f}"
|
34 |
+
for class_id, confidence in zip(
|
35 |
+
detections_filtered.class_id, detections_filtered.confidence
|
36 |
+
)
|
37 |
+
]
|
38 |
+
|
39 |
+
# Annotate the frame with bounding boxes and labels
|
40 |
+
annotated_frame = box_annotator.annotate(
|
41 |
+
scene=frame.copy(),
|
42 |
+
detections=detections_filtered,
|
43 |
+
)
|
44 |
+
annotated_frame = label_annotator.annotate(
|
45 |
+
scene=annotated_frame,
|
46 |
+
detections=detections_filtered,
|
47 |
+
labels=labels
|
48 |
+
)
|
49 |
+
|
50 |
+
return annotated_frame
|
51 |
+
|
52 |
+
# Function to process the video and generate the output
|
53 |
+
def process_video_gradio(input_video):
|
54 |
+
SOURCE_VIDEO_PATH = input_video
|
55 |
+
TARGET_VIDEO_PATH = f"{HOME}/output_fall_detection.mp4"
|
56 |
+
|
57 |
+
sv.process_video(
|
58 |
+
source_path=SOURCE_VIDEO_PATH,
|
59 |
+
target_path=TARGET_VIDEO_PATH,
|
60 |
+
callback=callback
|
61 |
+
)
|
62 |
+
|
63 |
+
return TARGET_VIDEO_PATH
|
64 |
+
|
65 |
+
# Define the Gradio interface
|
66 |
+
interface = gr.Interface(
|
67 |
+
fn=process_video_gradio, # Function to process video
|
68 |
+
inputs=gr.Video(), # Upload video input
|
69 |
+
outputs=gr.Video(), # Return the annotated video output
|
70 |
+
title="Fall Detection Video Annotator",
|
71 |
+
description="Upload a video, and the model will annotate it with fall detection using Fine-Tuned YOLO model."
|
72 |
)
|
73 |
+
|
74 |
+
# Launch the interface
|
75 |
+
if __name__ == "__main__":
|
76 |
+
interface.launch()
|