File size: 9,932 Bytes
dd217c7
 
 
 
a674527
 
 
 
 
dd217c7
 
 
a674527
dd217c7
 
 
a674527
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2c622
 
 
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
a674527
 
14d6715
ef90edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b82a0e
 
 
 
 
ef90edf
dd217c7
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
14d6715
 
0ac3155
dd217c7
 
 
 
 
 
 
 
 
 
 
 
a674527
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
 
 
 
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
 
dd217c7
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
a674527
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching

[![python](https://img.shields.io/badge/Python-3.10-brightgreen)](https://github.com/SWivid/F5-TTS)
[![arXiv](https://img.shields.io/badge/arXiv-2410.06885-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.06885)
[![demo](https://img.shields.io/badge/GitHub-Demo%20page-orange.svg)](https://swivid.github.io/F5-TTS/)
[![hfspace](https://img.shields.io/badge/🤗-Space%20demo-yellow)](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
[![msspace](https://img.shields.io/badge/🤖-Space%20demo-blue)](https://modelscope.cn/studios/modelscope/E2-F5-TTS)
[![lab](https://img.shields.io/badge/X--LANCE-Lab-grey?labelColor=lightgrey)](https://x-lance.sjtu.edu.cn/)
<img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto">

**F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.

**E2 TTS**: Flat-UNet Transformer, closest reproduction from [paper](https://arxiv.org/abs/2406.18009).

**Sway Sampling**: Inference-time flow step sampling strategy, greatly improves performance

### Thanks to all the contributors !

## Installation

Clone the repository:

```bash
git clone https://github.com/SWivid/F5-TTS.git
cd F5-TTS
```

Install torch with your CUDA version, e.g. :

```bash
pip install torch==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
pip install torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
```

Install other packages:

```bash
pip install -r requirements.txt
```

**[Optional]**: We provide [Dockerfile](https://github.com/SWivid/F5-TTS/blob/main/Dockerfile) and you can use the following command to build it.
```bash
docker build -t f5tts:v1 .
```

## Prepare Dataset

Example data processing scripts for Emilia and Wenetspeech4TTS, and you may tailor your own one along with a Dataset class in `model/dataset.py`.

```bash
# prepare custom dataset up to your need
# download corresponding dataset first, and fill in the path in scripts

# Prepare the Emilia dataset
python scripts/prepare_emilia.py

# Prepare the Wenetspeech4TTS dataset
python scripts/prepare_wenetspeech4tts.py
```

## Training & Finetuning

Once your datasets are prepared, you can start the training process.

```bash
# setup accelerate config, e.g. use multi-gpu ddp, fp16
# will be to: ~/.cache/huggingface/accelerate/default_config.yaml     
accelerate config
accelerate launch train.py
```
An initial guidance on Finetuning [#57](https://github.com/SWivid/F5-TTS/discussions/57).

Gradio UI finetuning with `finetune_gradio.py` see [#143](https://github.com/SWivid/F5-TTS/discussions/143).

### Wandb Logging

By default, the training script does NOT use logging (assuming you didn't manually log in using `wandb login`).

To turn on wandb logging, you can either:

1. Manually login with `wandb login`: Learn more [here](https://docs.wandb.ai/ref/cli/wandb-login)
2. Automatically login programmatically by setting an environment variable: Get an API KEY at https://wandb.ai/site/ and set the environment variable as follows:

On Mac & Linux:

```
export WANDB_API_KEY=<YOUR WANDB API KEY>
```

On Windows:

```
set WANDB_API_KEY=<YOUR WANDB API KEY>
```
Moreover, if you couldn't access Wandb and want to log metrics offline, you can the environment variable as follows:

```
export WANDB_MODE=offline
```

## Inference

The pretrained model checkpoints can be reached at [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS) and [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), or automatically downloaded with `inference-cli` and `gradio_app`.

Currently support 30s for a single generation, which is the **TOTAL** length of prompt audio and the generated. Batch inference with chunks is supported by `inference-cli` and `gradio_app`. 
- To avoid possible inference failures, make sure you have seen through the following instructions.
- A longer prompt audio allows shorter generated output. The part longer than 30s cannot be generated properly. Consider using a prompt audio <15s.
- Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words. 
- Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses. If first few words skipped in code-switched generation (cuz different speed with different languages), this might help.

### CLI Inference

Either you can specify everything in `inference-cli.toml` or override with flags. Leave `--ref_text ""` will have ASR model transcribe the reference audio automatically (use extra GPU memory). If encounter network error, consider use local ckpt, just set `ckpt_path` in `inference-cli.py`

for change model use `--ckpt_file` to specify the model you want to load,  
for change vocab.txt use `--vocab_file` to provide your vocab.txt file.

```bash
python inference-cli.py \
--model "F5-TTS" \
--ref_audio "tests/ref_audio/test_en_1_ref_short.wav" \
--ref_text "Some call me nature, others call me mother nature." \
--gen_text "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."

python inference-cli.py \
--model "E2-TTS" \
--ref_audio "tests/ref_audio/test_zh_1_ref_short.wav" \
--ref_text "对,这就是我,万人敬仰的太乙真人。" \
--gen_text "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道,我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"

# Multi voice
python inference-cli.py -c samples/story.toml
```

### Gradio App
Currently supported features:
- Chunk inference
- Podcast Generation
- Multiple Speech-Type Generation

You can launch a Gradio app (web interface) to launch a GUI for inference (will load ckpt from Huggingface, you may set `ckpt_path` to local file in `gradio_app.py`). Currently load ASR model, F5-TTS and E2 TTS all in once, thus use more GPU memory than `inference-cli`.

```bash
python gradio_app.py
```

You can specify the port/host:

```bash
python gradio_app.py --port 7860 --host 0.0.0.0
```

Or launch a share link:

```bash
python gradio_app.py --share
```

### Speech Editing

To test speech editing capabilities, use the following command.

```bash
python speech_edit.py
```

## Evaluation

### Prepare Test Datasets

1. Seed-TTS test set: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
2. LibriSpeech test-clean: Download from [OpenSLR](http://www.openslr.org/12/).
3. Unzip the downloaded datasets and place them in the data/ directory.
4. Update the path for the test-clean data in `scripts/eval_infer_batch.py`
5. Our filtered LibriSpeech-PC 4-10s subset is already under data/ in this repo

### Batch Inference for Test Set

To run batch inference for evaluations, execute the following commands:

```bash
# batch inference for evaluations
accelerate config  # if not set before
bash scripts/eval_infer_batch.sh
```

### Download Evaluation Model Checkpoints

1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).

### Objective Evaluation

Install packages for evaluation:

```bash
pip install -r requirements_eval.txt
```

**Some Notes**

For faster-whisper with CUDA 11:

```bash
pip install --force-reinstall ctranslate2==3.24.0
```

(Recommended) To avoid possible ASR failures, such as abnormal repetitions in output:

```bash
pip install faster-whisper==0.10.1
```

Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
```bash
# Evaluation for Seed-TTS test set
python scripts/eval_seedtts_testset.py

# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
python scripts/eval_librispeech_test_clean.py
```

## Acknowledgements

- [E2-TTS](https://arxiv.org/abs/2406.18009) brilliant work, simple and effective
- [Emilia](https://arxiv.org/abs/2407.05361), [WenetSpeech4TTS](https://arxiv.org/abs/2406.05763) valuable datasets
- [lucidrains](https://github.com/lucidrains) initial CFM structure with also [bfs18](https://github.com/bfs18) for discussion
- [SD3](https://arxiv.org/abs/2403.03206) & [Hugging Face diffusers](https://github.com/huggingface/diffusers) DiT and MMDiT code structure
- [torchdiffeq](https://github.com/rtqichen/torchdiffeq) as ODE solver, [Vocos](https://huggingface.co/charactr/vocos-mel-24khz) as vocoder
- [FunASR](https://github.com/modelscope/FunASR), [faster-whisper](https://github.com/SYSTRAN/faster-whisper), [UniSpeech](https://github.com/microsoft/UniSpeech) for evaluation tools
- [ctc-forced-aligner](https://github.com/MahmoudAshraf97/ctc-forced-aligner) for speech edit test
- [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
- [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx/tree/main) Implementation of F5-TTS, with the MLX framework.

## Citation
If our work and codebase is useful for you, please cite as:
```
@article{chen-etal-2024-f5tts,
      title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching}, 
      author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
      journal={arXiv preprint arXiv:2410.06885},
      year={2024},
}
```
## License

Our code is released under MIT License. The pre-trained models are licensed under the CC-BY-NC license due to the training data Emilia, which is an in-the-wild dataset. Sorry for any inconvenience this may cause.