jaleesahmed commited on
Commit
79ea815
·
1 Parent(s): 55501e5
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -4,6 +4,7 @@ from sklearn.preprocessing import LabelEncoder
4
 
5
  def data_description(desc_type):
6
  df = pd.read_csv('emp_experience_data.csv')
 
7
  pd.options.display.max_columns = 25
8
  pd.options.display.max_rows = 10
9
  if desc_type == "Display Data":
@@ -13,22 +14,21 @@ def data_description(desc_type):
13
  data_desc = df_copy.describe()
14
  data_desc.insert(0, "Description", ["count", "mean", "std", "min", "25%", "50%", "75%", "max"], True)
15
  return data_desc
16
- if desc_type == "Encode Data":
17
  categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation', 'SalarySatisfaction',
18
  'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
19
- data_encoded = df.copy(deep=True)
20
  label_encoding = LabelEncoder()
21
  data = [["Feature", "Mapping"]]
22
- # Create the pandas DataFrame
23
  for col in categorical_column:
24
  data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
25
  le_name_mapping = dict(zip(label_encoding.classes_, label_encoding.transform(label_encoding.classes_)))
26
  data.append([col, str(le_name_mapping)])
27
- #df_dict = pd.DataFrame(data, columns=['Column', 'Mapping'])
28
  return data
 
 
29
 
30
  inputs = [
31
- gr.Dropdown(["Display Data", "Describe Data", "Encode Data"], label="Data Actions")
32
  ]
33
 
34
  outputs = [gr.DataFrame()]
 
4
 
5
  def data_description(desc_type):
6
  df = pd.read_csv('emp_experience_data.csv')
7
+ data_encoded = df.copy(deep=True)
8
  pd.options.display.max_columns = 25
9
  pd.options.display.max_rows = 10
10
  if desc_type == "Display Data":
 
14
  data_desc = df_copy.describe()
15
  data_desc.insert(0, "Description", ["count", "mean", "std", "min", "25%", "50%", "75%", "max"], True)
16
  return data_desc
17
+ if desc_type == "Display Encoding":
18
  categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation', 'SalarySatisfaction',
19
  'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
 
20
  label_encoding = LabelEncoder()
21
  data = [["Feature", "Mapping"]]
 
22
  for col in categorical_column:
23
  data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
24
  le_name_mapping = dict(zip(label_encoding.classes_, label_encoding.transform(label_encoding.classes_)))
25
  data.append([col, str(le_name_mapping)])
 
26
  return data
27
+ if desc_type == "Display Encoded Data":
28
+ return data_encoded.head()
29
 
30
  inputs = [
31
+ gr.Dropdown(["Display Data", "Describe Data", "Display Encoding", "Display Encoded Data"], label="Perform Data Actions")
32
  ]
33
 
34
  outputs = [gr.DataFrame()]