File size: 12,491 Bytes
6ec60d5 5238467 6ec60d5 5238467 6457900 5238467 8e10a53 6ec60d5 5325fcc 6ec60d5 f187760 6ec60d5 5325fcc 6ec60d5 f187760 6ec60d5 e2b6220 6ec60d5 5325fcc 5238467 6ec60d5 1897b6f 5325fcc 1897b6f 65434a9 a6a8a83 5238467 6ec60d5 5325fcc 243ff9b 5325fcc 6ec60d5 6457900 5325fcc 6ec60d5 5238467 6ec60d5 5325fcc 6ec60d5 5238467 6ec60d5 5325fcc 6ec60d5 5238467 6457900 5238467 56d7528 f187760 5325fcc 5238467 6ec60d5 5325fcc 6ec60d5 5238467 5325fcc 6ec60d5 5238467 5325fcc 6ec60d5 5325fcc 6ec60d5 5325fcc f187760 243ff9b 6ec60d5 f187760 243ff9b 6ec60d5 5325fcc 243ff9b 6ec60d5 a6a8a83 6457900 5325fcc 6457900 5325fcc 2e0c668 6ec60d5 5325fcc 6ec60d5 5238467 5325fcc 6457900 5325fcc 6457900 5238467 243ff9b 56d7528 5325fcc e2b6220 5325fcc e2b6220 65434a9 e2b6220 65434a9 f187760 6b3bb53 f187760 5325fcc 243ff9b 5325fcc 243ff9b 5325fcc 758464e 8e10a53 f187760 925b7f8 8e10a53 a6a8a83 8e10a53 6b3bb53 f187760 8e10a53 6457900 8e10a53 5325fcc 66eea88 5325fcc 8e10a53 bad5667 8e10a53 ff38c5f 758464e 5325fcc 758464e 5325fcc 577d19d 5238467 758464e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.
import argparse
from concurrent.futures import ProcessPoolExecutor
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings
import base64
from einops import rearrange
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models.encodec import InterleaveStereoCompressionModel
from audiocraft.models import MusicGen, MultiBandDiffusion
from pydub import AudioSegment
import io
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
MODEL = None # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
IS_BATCHED = False # <- we hardcode it
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomiting on the logs.
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def load_model(version='facebook/musicgen-melody'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
del MODEL
MODEL = None # in case loading would crash
MODEL = MusicGen.get_pretrained(version)
def load_diffusion():
global MBD
if MBD is None:
print("loading MBD")
MBD = MultiBandDiffusion.get_mbd_musicgen()
def _do_predictions(texts, melodies, duration, progress=False, gradio_progress=None, **gen_kwargs):
MODEL.set_generation_params(duration=duration, **gen_kwargs)
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
be = time.time()
processed_melodies = []
target_sr = 32000
target_ac = 1
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
if melody.dim() == 1:
melody = melody[None]
melody = melody[..., :int(sr * duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
processed_melodies.append(melody)
try:
if any(m is not None for m in processed_melodies):
outputs = MODEL.generate_with_chroma(
descriptions=texts,
melody_wavs=processed_melodies,
melody_sample_rate=target_sr,
progress=progress,
return_tokens=USE_DIFFUSION
)
else:
outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
if USE_DIFFUSION:
if gradio_progress is not None:
gradio_progress(1, desc='Running MultiBandDiffusion...')
tokens = outputs[1]
if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
left, right = MODEL.compression_model.get_left_right_codes(tokens)
tokens = torch.cat([left, right])
outputs_diffusion = MBD.tokens_to_wav(tokens)
if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
assert outputs_diffusion.shape[1] == 1 # output is mono
outputs_diffusion = rearrange(outputs_diffusion, '(s b) c t -> b (s c) t', s=2)
outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
outputs = outputs.detach().cpu().float()
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_wavs.append(file.name)
file_cleaner.add(file.name)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_wavs
def predict_batched(texts, melodies):
max_text_length = 512
texts = [text[:max_text_length] for text in texts]
load_model('facebook/musicgen-stereo-melody')
return _do_predictions(texts, melodies, BATCHED_DURATION)
def predict_full(secret_token, model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
if secret_token != SECRET_TOKEN:
raise gr.Error(
f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
global INTERRUPTING
global USE_DIFFUSION
INTERRUPTING = False
progress(0, desc="Loading model...")
model_path = model_path.strip()
if model_path:
if not Path(model_path).exists():
raise gr.Error(f"Model path {model_path} doesn't exist.")
if not Path(model_path).is_dir():
raise gr.Error(f"Model path {model_path} must be a folder containing "
"state_dict.bin and compression_state_dict_.bin.")
model = model_path
if temperature < 0:
raise gr.Error("Temperature must be >= 0.")
if topk < 0:
raise gr.Error("Topk must be non-negative.")
if topp < 0:
raise gr.Error("Topp must be non-negative.")
topk = int(topk)
if decoder == "MultiBand_Diffusion":
USE_DIFFUSION = True
progress(0, desc="Loading diffusion model...")
load_diffusion()
else:
USE_DIFFUSION = False
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
wavs = _do_predictions(
[text], [melody], duration, progress=True,
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef,
gradio_progress=progress)
wav_path = wavs[0]
if USE_DIFFUSION:
wav_path = wavs[1]
wav_base64 = ""
# Convert WAV to MP3
mp3_path = wav_path.replace(".wav", ".mp3")
sound = AudioSegment.from_wav(wav_path)
sound.export(mp3_path, format="mp3")
# Encode the MP3 file to base64
mp3_base64 = ""
with open(mp3_path, "rb") as mp3_file:
mp3_base64 = base64.b64encode(mp3_file.read()).decode('utf-8')
# Prepend the appropriate data URI header
mp3_base64_data_uri = 'data:audio/mp3;base64,' + mp3_base64
return mp3_base64_data_uri
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(source="microphone", value=None, label="Microphone")
else:
return gr.update(source="upload", value=None, label="File")
def toggle_diffusion(choice):
if choice == "MultiBand_Diffusion":
return [gr.update(visible=True)]
else:
return [gr.update(visible=False)]
def ui_full():
with gr.Blocks() as interface:
gr.Markdown(
"""
# MusicGen
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
secret_token = gr.Text(
label='Secret Token',
max_lines=1,
placeholder='Enter your secret token'
)
text = gr.Text(label="Input Text", interactive=True)
with gr.Column():
radio = gr.Radio(["file", "mic"], value="file",
label="Condition on a melody (optional) File or Mic")
melody = gr.Audio(source="upload", type="numpy", label="File",
interactive=True, elem_id="melody-input")
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
"facebook/musicgen-large", "facebook/musicgen-melody-large",
"facebook/musicgen-stereo-small", "facebook/musicgen-stereo-medium",
"facebook/musicgen-stereo-melody", "facebook/musicgen-stereo-large",
"facebook/musicgen-stereo-melody-large"],
label="Model", value="facebook/musicgen-stereo-large", interactive=True)
model_path = gr.Text(label="Model Path (custom models)")
with gr.Row():
decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
label="Decoder", value="Default", interactive=True)
with gr.Row():
duration = gr.Slider(minimum=1, maximum=600, value=120, label="Duration", interactive=True)
with gr.Row():
topk = gr.Number(label="Top-k", value=250, interactive=True)
topp = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
with gr.Column():
audio_output = gr.Textbox(label="Generated Music (wav)")
submit.click(
fn=predict_full,
inputs=[secret_token, model, model_path, decoder, text, melody, duration, topk, topp,
temperature, cfg_coef],
outputs=audio_output,
api_name="run")
gr.HTML("""
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
<div style="text-align: center; color: black;">
<p style="color: black;">This space is a REST API to programmatically generate music.</p>
<p style="color: black;">Interested in using it? All credit is due to the <a href="https://huggingface.co/spaces/facebook/MusicGen" target="_blank">original space</a>, so go on and fork it 🤗</p>
</div>
</div>""")
interface.queue(max_size=12).launch()
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
# Show the interface
# we preload the model to avoid a timeout on the first request
load_model('facebook/musicgen-stereo-large')
ui_full()
|