File size: 12,491 Bytes
6ec60d5
 
5238467
6ec60d5
 
5238467
6457900
 
5238467
8e10a53
6ec60d5
5325fcc
6ec60d5
f187760
6ec60d5
5325fcc
6ec60d5
 
f187760
6ec60d5
e2b6220
6ec60d5
5325fcc
5238467
 
6ec60d5
 
1897b6f
5325fcc
 
1897b6f
65434a9
 
 
a6a8a83
5238467
6ec60d5
5325fcc
243ff9b
5325fcc
6ec60d5
6457900
5325fcc
6ec60d5
 
5238467
6ec60d5
 
5325fcc
6ec60d5
 
 
5238467
 
6ec60d5
 
5325fcc
6ec60d5
5238467
 
6457900
 
 
5238467
56d7528
f187760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5325fcc
5238467
6ec60d5
 
5325fcc
 
6ec60d5
5238467
 
5325fcc
 
 
 
 
 
 
 
6ec60d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5238467
5325fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec60d5
5325fcc
6ec60d5
 
 
 
 
5325fcc
f187760
243ff9b
6ec60d5
f187760
243ff9b
6ec60d5
 
 
 
 
5325fcc
243ff9b
6ec60d5
 
a6a8a83
 
 
 
 
6457900
5325fcc
6457900
5325fcc
 
 
 
 
 
 
 
 
2e0c668
 
 
 
 
 
 
6ec60d5
5325fcc
 
 
 
 
 
6ec60d5
5238467
5325fcc
 
6457900
5325fcc
 
 
6457900
 
 
5238467
243ff9b
56d7528
5325fcc
 
e2b6220
 
5325fcc
e2b6220
 
 
 
65434a9
 
 
 
 
 
 
 
 
 
 
 
e2b6220
65434a9
f187760
6b3bb53
 
 
 
 
f187760
 
5325fcc
 
243ff9b
5325fcc
243ff9b
5325fcc
 
758464e
8e10a53
 
 
 
f187760
 
925b7f8
8e10a53
 
 
 
 
a6a8a83
 
 
 
 
8e10a53
6b3bb53
f187760
 
 
 
8e10a53
 
6457900
 
8e10a53
5325fcc
 
 
 
 
66eea88
5325fcc
 
 
 
8e10a53
bad5667
8e10a53
 
 
 
 
 
ff38c5f
758464e
 
 
 
5325fcc
758464e
 
5325fcc
577d19d
 
 
 
 
 
 
5238467
758464e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.

import argparse
from concurrent.futures import ProcessPoolExecutor
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings
import base64

from einops import rearrange
import torch
import gradio as gr

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models.encodec import InterleaveStereoCompressionModel
from audiocraft.models import MusicGen, MultiBandDiffusion

from pydub import AudioSegment
import io

SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')

MODEL = None  # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
IS_BATCHED = False # <- we hardcode it
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call


def _call_nostderr(*args, **kwargs):
    # Avoid ffmpeg vomiting on the logs.
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)


sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()


def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


class FileCleaner:
    def __init__(self, file_lifetime: float = 3600):
        self.file_lifetime = file_lifetime
        self.files = []

    def add(self, path: tp.Union[str, Path]):
        self._cleanup()
        self.files.append((time.time(), Path(path)))

    def _cleanup(self):
        now = time.time()
        for time_added, path in list(self.files):
            if now - time_added > self.file_lifetime:
                if path.exists():
                    path.unlink()
                self.files.pop(0)
            else:
                break


file_cleaner = FileCleaner()

def load_model(version='facebook/musicgen-melody'):
    global MODEL
    print("Loading model", version)
    if MODEL is None or MODEL.name != version:
        del MODEL
        MODEL = None  # in case loading would crash
        MODEL = MusicGen.get_pretrained(version)


def load_diffusion():
    global MBD
    if MBD is None:
        print("loading MBD")
        MBD = MultiBandDiffusion.get_mbd_musicgen()


def _do_predictions(texts, melodies, duration, progress=False, gradio_progress=None, **gen_kwargs):
    MODEL.set_generation_params(duration=duration, **gen_kwargs)
    print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
    be = time.time()
    processed_melodies = []
    target_sr = 32000
    target_ac = 1
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., :int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)

    try:
        if any(m is not None for m in processed_melodies):
            outputs = MODEL.generate_with_chroma(
                descriptions=texts,
                melody_wavs=processed_melodies,
                melody_sample_rate=target_sr,
                progress=progress,
                return_tokens=USE_DIFFUSION
            )
        else:
            outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION)
    except RuntimeError as e:
        raise gr.Error("Error while generating " + e.args[0])
    if USE_DIFFUSION:
        if gradio_progress is not None:
            gradio_progress(1, desc='Running MultiBandDiffusion...')
        tokens = outputs[1]
        if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
            left, right = MODEL.compression_model.get_left_right_codes(tokens)
            tokens = torch.cat([left, right])
        outputs_diffusion = MBD.tokens_to_wav(tokens)
        if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
            assert outputs_diffusion.shape[1] == 1  # output is mono
            outputs_diffusion = rearrange(outputs_diffusion, '(s b) c t -> b (s c) t', s=2)
        outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
    outputs = outputs.detach().cpu().float()
    out_wavs = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_wavs.append(file.name)
            file_cleaner.add(file.name)

    print("batch finished", len(texts), time.time() - be)
    print("Tempfiles currently stored: ", len(file_cleaner.files))
    return out_wavs


def predict_batched(texts, melodies):
    max_text_length = 512
    texts = [text[:max_text_length] for text in texts]
    load_model('facebook/musicgen-stereo-melody')
    return _do_predictions(texts, melodies, BATCHED_DURATION)


def predict_full(secret_token, model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
    if secret_token != SECRET_TOKEN:
        raise gr.Error(
            f'Invalid secret token. Please fork the original space if you want to use it for yourself.')

    global INTERRUPTING
    global USE_DIFFUSION
    INTERRUPTING = False
    progress(0, desc="Loading model...")
    model_path = model_path.strip()
    if model_path:
        if not Path(model_path).exists():
            raise gr.Error(f"Model path {model_path} doesn't exist.")
        if not Path(model_path).is_dir():
            raise gr.Error(f"Model path {model_path} must be a folder containing "
                           "state_dict.bin and compression_state_dict_.bin.")
        model = model_path
    if temperature < 0:
        raise gr.Error("Temperature must be >= 0.")
    if topk < 0:
        raise gr.Error("Topk must be non-negative.")
    if topp < 0:
        raise gr.Error("Topp must be non-negative.")

    topk = int(topk)
    if decoder == "MultiBand_Diffusion":
        USE_DIFFUSION = True
        progress(0, desc="Loading diffusion model...")
        load_diffusion()
    else:
        USE_DIFFUSION = False
    load_model(model)

    max_generated = 0

    def _progress(generated, to_generate):
        nonlocal max_generated
        max_generated = max(generated, max_generated)
        progress((min(max_generated, to_generate), to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    wavs = _do_predictions(
        [text], [melody], duration, progress=True,
        top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef,
        gradio_progress=progress)

    wav_path = wavs[0]
    if USE_DIFFUSION:
        wav_path = wavs[1]
    wav_base64 = ""
    

    # Convert WAV to MP3
    mp3_path = wav_path.replace(".wav", ".mp3")
    sound = AudioSegment.from_wav(wav_path)
    sound.export(mp3_path, format="mp3")

    # Encode the MP3 file to base64
    mp3_base64 = ""
    with open(mp3_path, "rb") as mp3_file:
        mp3_base64 = base64.b64encode(mp3_file.read()).decode('utf-8')

    # Prepend the appropriate data URI header
    mp3_base64_data_uri = 'data:audio/mp3;base64,' + mp3_base64
    
    return mp3_base64_data_uri

def toggle_audio_src(choice):
    if choice == "mic":
        return gr.update(source="microphone", value=None, label="Microphone")
    else:
        return gr.update(source="upload", value=None, label="File")


def toggle_diffusion(choice):
    if choice == "MultiBand_Diffusion":
        return [gr.update(visible=True)]
    else:
        return [gr.update(visible=False)]


def ui_full():
    with gr.Blocks() as interface:
        gr.Markdown(
            """
            # MusicGen
            This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
            a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    secret_token = gr.Text(
                        label='Secret Token',
                        max_lines=1,
                        placeholder='Enter your secret token'
                    )
                    text = gr.Text(label="Input Text", interactive=True)
                    with gr.Column():
                        radio = gr.Radio(["file", "mic"], value="file",
                                         label="Condition on a melody (optional) File or Mic")
                        melody = gr.Audio(source="upload", type="numpy", label="File",
                                          interactive=True, elem_id="melody-input")
                with gr.Row():
                    submit = gr.Button("Submit")
                    # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                    _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                with gr.Row():
                    model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
                                      "facebook/musicgen-large", "facebook/musicgen-melody-large",
                                      "facebook/musicgen-stereo-small", "facebook/musicgen-stereo-medium",
                                      "facebook/musicgen-stereo-melody", "facebook/musicgen-stereo-large",
                                      "facebook/musicgen-stereo-melody-large"],
                                     label="Model", value="facebook/musicgen-stereo-large", interactive=True)
                    model_path = gr.Text(label="Model Path (custom models)")
                with gr.Row():
                    decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
                                       label="Decoder", value="Default", interactive=True)
                with gr.Row():
                    duration = gr.Slider(minimum=1, maximum=600, value=120, label="Duration", interactive=True)
                with gr.Row():
                    topk = gr.Number(label="Top-k", value=250, interactive=True)
                    topp = gr.Number(label="Top-p", value=0, interactive=True)
                    temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
                    cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
            with gr.Column():
                audio_output = gr.Textbox(label="Generated Music (wav)")
        
        submit.click(
            fn=predict_full,
             inputs=[secret_token, model, model_path, decoder, text, melody, duration, topk, topp,
                                                                     temperature, cfg_coef],
            outputs=audio_output,
            api_name="run")

        gr.HTML("""
            <div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
              <div style="text-align: center; color: black;">
                <p style="color: black;">This space is a REST API to programmatically generate music.</p>
                <p style="color: black;">Interested in using it? All credit is due to the <a href="https://huggingface.co/spaces/facebook/MusicGen" target="_blank">original space</a>, so go on and fork it 🤗</p>
              </div>
        </div>""")

        interface.queue(max_size=12).launch()

logging.basicConfig(level=logging.INFO, stream=sys.stderr)

# Show the interface
# we preload the model to avoid a timeout on the first request
load_model('facebook/musicgen-stereo-large')
ui_full()