Spaces:
Sleeping
Sleeping
File size: 12,683 Bytes
b462bee 23a93a3 b462bee 39450a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os, sys, time, re, pdb
import torch, torchvision
import numpy
from PIL import Image
import hashlib
from tqdm import tqdm
import openai
from utils.direction_utils import *
p = "submodules/pix2pix-zero/src/utils"
if p not in sys.path:
sys.path.append(p)
from diffusers import DDIMScheduler
from edit_directions import construct_direction
from edit_pipeline import EditingPipeline
from ddim_inv import DDIMInversion
from scheduler import DDIMInverseScheduler
from lavis.models import load_model_and_preprocess
from transformers import T5Tokenizer, AutoTokenizer, T5ForConditionalGeneration, BloomForCausalLM
def load_sentence_embeddings(l_sentences, tokenizer, text_encoder, device="cuda"):
with torch.no_grad():
l_embeddings = []
for sent in tqdm(l_sentences):
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
l_embeddings.append(prompt_embeds)
return torch.concatenate(l_embeddings, dim=0).mean(dim=0).unsqueeze(0)
def launch_generate_sample(prompt, seed, negative_scale, num_ddim):
os.makedirs("tmp", exist_ok=True)
# do the editing
edit_pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to("cuda")
edit_pipe.scheduler = DDIMScheduler.from_config(edit_pipe.scheduler.config)
# set the random seed and sample the input noise map
torch.cuda.manual_seed(int(seed))
z = torch.randn((1,4,64,64), device="cuda")
z_hashname = hashlib.sha256(z.cpu().numpy().tobytes()).hexdigest()
z_inv_fname = f"tmp/{z_hashname}_ddim_{num_ddim}_inv.pt"
torch.save(z, z_inv_fname)
rec_pil = edit_pipe(prompt,
num_inference_steps=num_ddim, x_in=z,
only_sample=True, # this flag will only generate the sampled image, not the edited image
guidance_scale=negative_scale,
negative_prompt="" # use the empty string for the negative prompt
)
# print(rec_pil)
del edit_pipe
torch.cuda.empty_cache()
return rec_pil[0], z_inv_fname
def clean_l_sentences(ls):
s = [re.sub('\d', '', x) for x in ls]
s = [x.replace(".","").replace("-","").replace(")","").strip() for x in s]
return s
def gpt3_compute_word2sentences(task_type, word, num=100):
l_sentences = []
if task_type=="object":
template_prompt = f"Provide many captions for images containing {word}."
elif task_type=="style":
template_prompt = f"Provide many captions for images that are in the {word} style."
while True:
ret = openai.Completion.create(
model="text-davinci-002",
prompt=template_prompt,
max_tokens=1000,
temperature=1.0)
raw_return = ret.choices[0].text
for line in raw_return.split("\n"):
line = line.strip()
if len(line)>10:
skip=False
for subword in word.split(" "):
if subword not in line: skip=True
if not skip: l_sentences.append(line)
else:
l_sentences.append(line+f", {word}")
time.sleep(0.05)
print(len(l_sentences))
if len(l_sentences)>=num:
break
l_sentences = clean_l_sentences(l_sentences)
return l_sentences
def flant5xl_compute_word2sentences(word, num=100):
text_input = f"Provide a caption for images containing a {word}. The captions should be in English and should be no longer than 150 characters."
l_sentences = []
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto", torch_dtype=torch.float16)
input_ids = tokenizer(text_input, return_tensors="pt").input_ids.to("cuda")
input_length = input_ids.shape[1]
while True:
outputs = model.generate(input_ids,temperature=0.9, num_return_sequences=16, do_sample=True, max_length=128)
output = tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)
for line in output:
line = line.strip()
skip=False
for subword in word.split(" "):
if subword not in line: skip=True
if not skip: l_sentences.append(line)
else: l_sentences.append(line+f", {word}")
print(len(l_sentences))
if len(l_sentences)>=num:
break
l_sentences = clean_l_sentences(l_sentences)
del model
del tokenizer
torch.cuda.empty_cache()
return l_sentences
def bloomz_compute_sentences(word, num=100):
l_sentences = []
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-7b1")
model = BloomForCausalLM.from_pretrained("bigscience/bloomz-7b1", device_map="auto", torch_dtype=torch.float16)
input_text = f"Provide a caption for images containing a {word}. The captions should be in English and should be no longer than 150 characters. Caption:"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
input_length = input_ids.shape[1]
t = 0.95
eta = 1e-5
min_length = 15
while True:
try:
outputs = model.generate(input_ids,temperature=t, num_return_sequences=16, do_sample=True, max_length=128, min_length=min_length, eta_cutoff=eta)
output = tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)
except:
continue
for line in output:
line = line.strip()
skip=False
for subword in word.split(" "):
if subword not in line: skip=True
if not skip: l_sentences.append(line)
else: l_sentences.append(line+f", {word}")
print(len(l_sentences))
if len(l_sentences)>=num:
break
l_sentences = clean_l_sentences(l_sentences)
del model
del tokenizer
torch.cuda.empty_cache()
return l_sentences
def make_custom_dir(description, sent_type, api_key, org_key, l_custom_sentences):
if sent_type=="fixed-template":
l_sentences = generate_image_prompts_with_templates(description)
elif "GPT3" in sent_type:
import openai
openai.organization = org_key
openai.api_key = api_key
_=openai.Model.retrieve("text-davinci-002")
l_sentences = gpt3_compute_word2sentences("object", description, num=1000)
elif "flan-t5-xl" in sent_type:
l_sentences = flant5xl_compute_word2sentences(description, num=1000)
# save the sentences to file
with open(f"tmp/flant5xl_sentences_{description}.txt", "w") as f:
for line in l_sentences:
f.write(line+"\n")
elif "BLOOMZ-7B" in sent_type:
l_sentences = bloomz_compute_sentences(description, num=1000)
# save the sentences to file
with open(f"tmp/bloomz_sentences_{description}.txt", "w") as f:
for line in l_sentences:
f.write(line+"\n")
elif sent_type=="custom sentences":
l_sentences = l_custom_sentences.split("\n")
print(f"length of new sentence is {len(l_sentences)}")
pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to("cuda")
emb = load_sentence_embeddings(l_sentences, pipe.tokenizer, pipe.text_encoder, device="cuda")
del pipe
torch.cuda.empty_cache()
return emb
def launch_main(img_in_real, img_in_synth, src, src_custom, dest, dest_custom, num_ddim, xa_guidance, edit_mul, fpath_z_gen, gen_prompt, sent_type_src, sent_type_dest, api_key, org_key, custom_sentences_src, custom_sentences_dest):
d_name2desc = get_all_directions_names()
d_desc2name = {v:k for k,v in d_name2desc.items()}
os.makedirs("tmp", exist_ok=True)
# generate custom direction first
if src=="make your own!":
outf_name = f"tmp/template_emb_{src_custom}_{sent_type_src}.pt"
if not os.path.exists(outf_name):
src_emb = make_custom_dir(src_custom, sent_type_src, api_key, org_key, custom_sentences_src)
torch.save(src_emb, outf_name)
else:
src_emb = torch.load(outf_name)
else:
src_emb = get_emb(d_desc2name[src])
if dest=="make your own!":
outf_name = f"tmp/template_emb_{dest_custom}_{sent_type_dest}.pt"
if not os.path.exists(outf_name):
dest_emb = make_custom_dir(dest_custom, sent_type_dest, api_key, org_key, custom_sentences_dest)
torch.save(dest_emb, outf_name)
else:
dest_emb = torch.load(outf_name)
else:
dest_emb = get_emb(d_desc2name[dest])
text_dir = (dest_emb.cuda() - src_emb.cuda())*edit_mul
if img_in_real is not None and img_in_synth is None:
print("using real image")
# resize the image so that the longer side is 512
width, height = img_in_real.size
if width > height: scale_factor = 512 / width
else: scale_factor = 512 / height
new_size = (int(width * scale_factor), int(height * scale_factor))
img_in_real = img_in_real.resize(new_size, Image.Resampling.LANCZOS)
hash = hashlib.sha256(img_in_real.tobytes()).hexdigest()
# print(hash)
inv_fname = f"tmp/{hash}_ddim_{num_ddim}_inv.pt"
caption_fname = f"tmp/{hash}_caption.txt"
# make the caption if it hasn't been made before
if not os.path.exists(caption_fname):
# BLIP
model_blip, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=torch.device("cuda"))
_image = vis_processors["eval"](img_in_real).unsqueeze(0).cuda()
prompt_str = model_blip.generate({"image": _image})[0]
del model_blip
torch.cuda.empty_cache()
with open(caption_fname, "w") as f:
f.write(prompt_str)
else:
prompt_str = open(caption_fname, "r").read().strip()
print(f"CAPTION: {prompt_str}")
# do the inversion if it hasn't been done before
if not os.path.exists(inv_fname):
# inversion pipeline
pipe_inv = DDIMInversion.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to("cuda")
pipe_inv.scheduler = DDIMInverseScheduler.from_config(pipe_inv.scheduler.config)
x_inv, x_inv_image, x_dec_img = pipe_inv( prompt_str,
guidance_scale=1, num_inversion_steps=num_ddim,
img=img_in_real, torch_dtype=torch.float32 )
x_inv = x_inv.detach()
torch.save(x_inv, inv_fname)
del pipe_inv
torch.cuda.empty_cache()
else:
x_inv = torch.load(inv_fname)
# do the editing
edit_pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to("cuda")
edit_pipe.scheduler = DDIMScheduler.from_config(edit_pipe.scheduler.config)
_, edit_pil = edit_pipe(prompt_str,
num_inference_steps=num_ddim,
x_in=x_inv,
edit_dir=text_dir,
guidance_amount=xa_guidance,
guidance_scale=5.0,
negative_prompt=prompt_str # use the unedited prompt for the negative prompt
)
del edit_pipe
torch.cuda.empty_cache()
return edit_pil[0]
elif img_in_real is None and img_in_synth is not None:
print("using synthetic image")
x_inv = torch.load(fpath_z_gen)
pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
rec_pil, edit_pil = pipe(gen_prompt,
num_inference_steps=num_ddim,
x_in=x_inv,
edit_dir=text_dir,
guidance_amount=xa_guidance,
guidance_scale=5,
negative_prompt="" # use the empty string for the negative prompt
)
del pipe
torch.cuda.empty_cache()
return edit_pil[0]
else:
raise ValueError(f"Invalid image type found: {img_in_real} {img_in_synth}")
if __name__=="__main__":
print(flant5xl_compute_word2sentences("cat wearing sunglasses", num=100))
|