Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio.components import Slider, Textbox, Radio | |
import tensorflow as tf | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
global tokenizer, model, script_speaker_name, script_responder_name, convo | |
tokenizer = GPT2Tokenizer.from_pretrained("ethzanalytics/ai-msgbot-gpt2-XL-dialogue") | |
model = GPT2LMHeadModel.from_pretrained("ethzanalytics/ai-msgbot-gpt2-XL-dialogue", pad_token_id=tokenizer.eos_token_id) | |
script_speaker_name = "person alpha" | |
script_responder_name = "person beta" | |
global convo | |
convo = "" | |
def output(prompt, output_length): | |
global convo | |
if prompt.split(" ")[0].strip()=="clear_convo()": | |
convo = "" | |
prompt = prompt.split("clear_convo()")[1].strip() | |
sentence = convo + '\n' + script_speaker_name + ': ' + prompt + '\n' + script_responder_name + ': ' | |
input_ids = tokenizer.encode(sentence, return_tensors='pt') | |
# generate text until the output length (which includes the context length) reaches 50 | |
output = model.generate(input_ids, max_new_tokens=output_length, num_beams=5, no_repeat_ngram_size=2, early_stopping=True) | |
convo = tokenizer.decode(output[0], skip_special_tokens=True) | |
return convo | |
convo = '' | |
iface = gr.Interface(fn=output, inputs=["text", Slider(minimum=1.0, maximum=1000.0, step=1.0, default=50.0, label="Output Length")], outputs="text") | |
iface.launch() |