Spaces:
Sleeping
Sleeping
Add KDE func
Browse files- web_app.py +23 -16
web_app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import cv2
|
|
|
3 |
import pandas as pd
|
4 |
import PIL.Image as Image
|
5 |
import gradio as gr
|
@@ -107,7 +108,7 @@ def predict_image(name, model, img, conf_threshold, iou_threshold):
|
|
107 |
file_name.append(file_label)
|
108 |
|
109 |
### ============================
|
110 |
-
|
111 |
kde = KernelDensity(metric='euclidean', kernel='gaussian', algorithm='ball_tree')
|
112 |
|
113 |
# Finding Optimal Bandwidth
|
@@ -124,7 +125,8 @@ def predict_image(name, model, img, conf_threshold, iou_threshold):
|
|
124 |
(tf - ti)))
|
125 |
kde.bandwidth = bw
|
126 |
_ = kde.fit(cno_coor)
|
127 |
-
|
|
|
128 |
xgrid = np.arange(0, result.orig_img.shape[1], 1)
|
129 |
ygrid = np.arange(0, result.orig_img.shape[0], 1)
|
130 |
xv, yv = np.meshgrid(xgrid, ygrid)
|
@@ -152,7 +154,7 @@ def predict_image(name, model, img, conf_threshold, iou_threshold):
|
|
152 |
if layer_area == 0:
|
153 |
density = np.round(0.0, 4)
|
154 |
else:
|
155 |
-
density = np.round((ecno / layer_area) *
|
156 |
print("Level {}: Area={}, CNO={}, density={}".format(j, layer_area, ecno, density))
|
157 |
single_layer_area.append(layer_area)
|
158 |
single_layer_cno.append(ecno)
|
@@ -171,20 +173,24 @@ def predict_image(name, model, img, conf_threshold, iou_threshold):
|
|
171 |
plt.gca().invert_yaxis()
|
172 |
plt.xlim(0, gdim[1] - 1)
|
173 |
plt.ylim(gdim[0] - 1, 0)
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
#plt.savefig(os.path.join(kde_dir, '{}_{}_{}_KDE.png'.format(file_list[idx], model_type, conf)),
|
176 |
# bbox_inches='tight', pad_inches=0)
|
177 |
-
"""
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
|
|
|
188 |
### ============================
|
189 |
|
190 |
data = {
|
@@ -306,5 +312,6 @@ iface = gr.Interface(
|
|
306 |
|
307 |
if __name__ == '__main__':
|
308 |
# iface.launch()
|
309 |
-
app.launch(share=False, auth=[('jenhw', 'admin'), ('user', 'admin')],
|
310 |
-
#
|
|
|
|
1 |
import os
|
2 |
import cv2
|
3 |
+
import io
|
4 |
import pandas as pd
|
5 |
import PIL.Image as Image
|
6 |
import gradio as gr
|
|
|
108 |
file_name.append(file_label)
|
109 |
|
110 |
### ============================
|
111 |
+
|
112 |
kde = KernelDensity(metric='euclidean', kernel='gaussian', algorithm='ball_tree')
|
113 |
|
114 |
# Finding Optimal Bandwidth
|
|
|
125 |
(tf - ti)))
|
126 |
kde.bandwidth = bw
|
127 |
_ = kde.fit(cno_coor)
|
128 |
+
print("deb", result.orig_img.shape[1])
|
129 |
+
print("deb", result.orig_img.shape[0])
|
130 |
xgrid = np.arange(0, result.orig_img.shape[1], 1)
|
131 |
ygrid = np.arange(0, result.orig_img.shape[0], 1)
|
132 |
xv, yv = np.meshgrid(xgrid, ygrid)
|
|
|
154 |
if layer_area == 0:
|
155 |
density = np.round(0.0, 4)
|
156 |
else:
|
157 |
+
density = np.round((ecno / layer_area) * result.orig_img.shape[0] * result.orig_img.shape[1] / 400, 4)
|
158 |
print("Level {}: Area={}, CNO={}, density={}".format(j, layer_area, ecno, density))
|
159 |
single_layer_area.append(layer_area)
|
160 |
single_layer_cno.append(ecno)
|
|
|
173 |
plt.gca().invert_yaxis()
|
174 |
plt.xlim(0, gdim[1] - 1)
|
175 |
plt.ylim(gdim[0] - 1, 0)
|
176 |
+
plt.plot()
|
177 |
+
# plt.show()
|
178 |
+
|
179 |
+
# plt.savefig("test.png", format='png', bbox_inches='tight', pad_inches=0)
|
180 |
+
# plt.figure()
|
181 |
+
# plt.plot([1, 2])
|
182 |
+
img_buf = io.BytesIO()
|
183 |
+
plt.savefig(img_buf, format='png', bbox_inches='tight', pad_inches=0)
|
184 |
+
kde_im = Image.open(img_buf)
|
185 |
+
# kde_im.show()
|
186 |
+
|
187 |
+
# kde_img = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
|
188 |
+
# kde_image.append([imgplot, file_label])
|
189 |
+
kde_image.append([kde_im, file_label])
|
190 |
#plt.savefig(os.path.join(kde_dir, '{}_{}_{}_KDE.png'.format(file_list[idx], model_type, conf)),
|
191 |
# bbox_inches='tight', pad_inches=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
#img_buf.close()
|
194 |
### ============================
|
195 |
|
196 |
data = {
|
|
|
312 |
|
313 |
if __name__ == '__main__':
|
314 |
# iface.launch()
|
315 |
+
# app.launch(share=False, auth=[('jenhw', 'admin'), ('user', 'admin')],
|
316 |
+
# auth_message="Enter your username and password")
|
317 |
+
app.launch(share=False)
|