File size: 5,446 Bytes
1c29b1a
ac493ec
 
 
 
 
49bd8e8
ac493ec
49bd8e8
ac493ec
 
 
2ae8bfe
 
 
 
 
 
ac493ec
1c29b1a
0f33bb1
 
 
 
 
 
 
 
 
 
 
 
1c29b1a
0f33bb1
 
 
 
 
 
 
 
 
 
2ae8bfe
0f33bb1
1c29b1a
 
0f33bb1
 
 
 
 
 
ac493ec
2ae8bfe
ac493ec
 
 
2ae8bfe
ac493ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e37370
f8c09da
 
 
 
2e37370
f8c09da
2e37370
f8c09da
 
 
 
 
 
 
 
ac493ec
 
 
 
 
 
 
 
 
 
 
 
2e37370
 
 
ac493ec
 
 
 
 
 
 
75f72d8
 
 
ac493ec
 
 
 
 
 
 
 
 
 
 
 
 
c555b55
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
from typing import Optional, Tuple

import gradio as gr
import pandas as pd
from buster.completers import Completion
from buster.utils import extract_zip

from embed_docs import crawl_and_embed_docs
import cfg
from cfg import setup_buster

# Typehint for chatbot history
ChatHistory = list[list[Optional[str], Optional[str]]]


# Because this is a one-click deploy app, we will be relying on env. variables being set
openai_api_key = os.getenv("OPENAI_API_KEY")  # Mandatory for app to work


if os.path.exists("outputs.zip"):
    print("Found outputs.zip, Skipping crawl and embed.")
    extract_zip("outputs.zip", output_path="outputs")

else:
    readthedocs_url = os.getenv("READTHEDOCS_URL")  # Mandatory for app to work as intended
    readthedocs_version = os.getenv("READTHEDOCS_VERSION")

    if openai_api_key is None:
        print(
            "Warning: No OPENAI_API_KEY detected. Set it with 'export OPENAI_API_KEY=sk-...'."
        )

    if readthedocs_url is None:
        raise ValueError(
            "No READTHEDOCS_URL detected. Set it with e.g. 'export READTHEDOCS_URL=https://orion.readthedocs.io/'"
        )

    if readthedocs_version is None:
        print(
            """
        Warning: No READTHEDOCS_VERSION detected. If multiple versions of the docs exist, they will all be scraped.
        Set it with e.g. 'export READTHEDOCS_VERSION=en/stable'
        """
        )


    # scrape and embed content from readthedocs website
    crawl_and_embed_docs(
        homepage_url=readthedocs_url,
        save_directory="outputs",  # Expected to be in outputs/ by buster cfg
        target_version=readthedocs_version,
    )

# Setup RAG agent
buster = setup_buster(cfg.buster_cfg)


# Setup Gradio app
def add_user_question(
    user_question: str, chat_history: Optional[ChatHistory] = None
) -> ChatHistory:
    """Adds a user's question to the chat history.

    If no history is provided, the first element of the history will be the user conversation.
    """
    if chat_history is None:
        chat_history = []
    chat_history.append([user_question, None])
    return chat_history


def format_sources(matched_documents: pd.DataFrame) -> str:
    if len(matched_documents) == 0:
        return ""

    matched_documents.similarity_to_answer = (
        matched_documents.similarity_to_answer * 100
    )

    # drop duplicate pages (by title), keep highest ranking ones
    matched_documents = matched_documents.sort_values(
        "similarity_to_answer", ascending=False
    ).drop_duplicates("title", keep="first")

    documents_answer_template: str = "๐Ÿ“ Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
    document_template: str = "[๐Ÿ”— {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"

    documents = "\n".join(
        [
            document_template.format(document=document)
            for _, document in matched_documents.iterrows()
        ]
    )
    footnote: str = "I'm a bot ๐Ÿค– and not always perfect."

    return documents_answer_template.format(documents=documents, footnote=footnote)


def add_sources(history, completion):
    if completion.answer_relevant:
        formatted_sources = format_sources(completion.matched_documents)
        history.append([None, formatted_sources])

    return history


def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]:
    """Answer a user's question using retrieval augmented generation."""

    # We assume that the question is the user's last interaction
    user_input = chat_history[-1][0]

    # Do retrieval + augmented generation with buster
    completion = buster.process_input(user_input)

    # Stream tokens one at a time to the user
    chat_history[-1][1] = ""
    for token in completion.answer_generator:
        chat_history[-1][1] += token

        yield chat_history, completion


demo = gr.Blocks()
with demo:
    with gr.Row():
        gr.Markdown("<h1><center>RAGTheDocs - docs.mila.quebec </center></h1>")

    gr.Markdown(
        """
        ## About
        RAGTheDocs allows you to ask questions found on the docs.mila.quebec website.

        Try it out by asking a question below about [mila docs](https://docs.mila.quebec/).

        ## How it works
        This app uses [Buster ๐Ÿค–](https://github.com/jerpint/buster) and ChatGPT to search the docs for relevant info and
        answer questions.
        View the code on the [project homepage](https://github.com/jerpint/RAGTheDocs)
        """
    )

    chatbot = gr.Chatbot()

    with gr.Row():
        question = gr.Textbox(
            label="What's your question?",
            placeholder="Type your question here...",
            lines=1,
        )
        submit = gr.Button(value="Send", variant="secondary")

    examples = gr.Examples(
        examples=[
            "How can I request a job with multiple GPUs?",
            "Where should I store large datasets?",
            "how can i view my GPU usage?",
        ],
        inputs=question,
    )

    response = gr.State()

    # fmt: off
    gr.on(
        triggers=[submit.click, question.submit],
        fn=add_user_question,
        inputs=[question],
        outputs=[chatbot]
    ).then(
        chat,
        inputs=[chatbot],
        outputs=[chatbot, response]
    ).then(
        add_sources,
        inputs=[chatbot, response],
        outputs=[chatbot]
    )


demo.launch()