jerpint's picture
remove unused code, add exceptions if variables not set
2ae8bfe
raw
history blame
5.4 kB
import os
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
from buster.completers import Completion
# from embed_docs import embed_rtd_website
# from rtd_scraper.scrape_rtd import scrape_rtd
from embed_docs import embed_documents
import cfg
from cfg import setup_buster
# Typehint for chatbot history
ChatHistory = list[list[Optional[str], Optional[str]]]
# Because this is a one-click deploy app, we will be relying on env. variables being set
openai_api_key = os.getenv("OPENAI_API_KEY") # Mandatory for app to work
readthedocs_url = os.getenv("READTHEDOCS_URL") # Mandatory for app to work as intended
readthedocs_version = os.getenv("READTHEDOCS_VERSION")
if openai_api_key is None:
print(
"Warning: No OPENAI_API_KEY detected. Set it with 'export OPENAI_API_KEY=sk-...'."
)
if readthedocs_url is None:
raise ValueError(
"No READTHEDOCS_URL detected. Set it with e.g. 'export READTHEDOCS_URL=https://orion.readthedocs.io/'"
)
if readthedocs_version is None:
print(
"""
Warning: No READTHEDOCS_VERSION detected. If multiple versions of the docs exist, they will all be scraped.
Set it with e.g. 'export READTHEDOCS_VERSION=en/stable'
"""
)
# Override to put it anywhere
save_directory = "outputs/"
# scrape and embed content from readthedocs website
embed_documents(
homepage_url=readthedocs_url,
save_directory=save_directory,
target_version=readthedocs_version,
)
# Setup RAG agent
buster = setup_buster(cfg.buster_cfg)
# Setup Gradio app
def add_user_question(
user_question: str, chat_history: Optional[ChatHistory] = None
) -> ChatHistory:
"""Adds a user's question to the chat history.
If no history is provided, the first element of the history will be the user conversation.
"""
if chat_history is None:
chat_history = []
chat_history.append([user_question, None])
return chat_history
def format_sources(matched_documents: pd.DataFrame) -> str:
if len(matched_documents) == 0:
return ""
matched_documents.similarity_to_answer = (
matched_documents.similarity_to_answer * 100
)
# drop duplicate pages (by title), keep highest ranking ones
matched_documents = matched_documents.sort_values(
"similarity_to_answer", ascending=False
).drop_duplicates("title", keep="first")
documents_answer_template: str = "πŸ“ Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
document_template: str = "[πŸ”— {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"
documents = "\n".join(
[
document_template.format(document=document)
for _, document in matched_documents.iterrows()
]
)
footnote: str = "I'm a bot πŸ€– and not always perfect."
return documents_answer_template.format(documents=documents, footnote=footnote)
def add_sources(history, completion):
if completion.answer_relevant:
formatted_sources = format_sources(completion.matched_documents)
history.append([None, formatted_sources])
return history
def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]:
"""Answer a user's question using retrieval augmented generation."""
# We assume that the question is the user's last interaction
user_input = chat_history[-1][0]
# Do retrieval + augmented generation with buster
completion = buster.process_input(user_input)
# Stream tokens one at a time to the user
chat_history[-1][1] = ""
for token in completion.answer_generator:
chat_history[-1][1] += token
yield chat_history, completion
demo = gr.Blocks()
with demo:
with gr.Row():
gr.Markdown("<h1><center>RAGTheDocs</center></h1>")
gr.Markdown(
"""
## About
RAGTheDocs allows you to ask questions about any documentation hosted on readthedocs.
Simply clone this space and point it to the right URL!
Try it out by asking a question below about [orion](https://orion.readthedocs.io/), an open-source hyperparameter optimization library.
## How it works
This app uses [Buster πŸ€–](https://github.com/jerpint/buster) and ChatGPT to search the docs for relevant info and
answer questions.
View the code on the [project homepage](https://github.com/jerpint/RAGTheDocs)
"""
)
chatbot = gr.Chatbot()
with gr.Row():
question = gr.Textbox(
label="What's your question?",
placeholder="Type your question here...",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary")
examples = gr.Examples(
examples=[
"How can I install the library?",
"What dependencies are required?",
"Give a brief overview of the library.",
],
inputs=question,
)
response = gr.State()
# fmt: off
gr.on(
triggers=[submit.click, question.submit],
fn=add_user_question,
inputs=[question],
outputs=[chatbot]
).then(
chat,
inputs=[chatbot],
outputs=[chatbot, response]
).then(
add_sources,
inputs=[chatbot, response],
outputs=[chatbot]
)
demo.queue(concurrency_count=8)
demo.launch(share=False)