jinhybr commited on
Commit
8e3f06a
·
verified ·
1 Parent(s): 3260f69

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -12
app.py CHANGED
@@ -22,19 +22,44 @@ tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
22
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
23
 
24
 
25
- # Define the Gradio interface
26
- def translate_to_sql(question):
27
- strA = 'You are a text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.\nSCHEMA:\nCREATE TABLE table_17429402_7 (school VARCHAR, last_occ_championship VARCHAR)'
28
- combined_json_data = [{'content': strA, 'role': 'system'}, {'content': question, 'role': 'user'}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  prompt = pipe.tokenizer.apply_chat_template(combined_json_data, tokenize=False, add_generation_prompt=True)
30
  outputs = pipe(prompt, max_new_tokens=256, do_sample=False, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
31
- return outputs[0]['generated_text'][len(prompt):].strip()
32
-
33
- question_input = gr.inputs.Textbox(lines=7, label="Enter your question")
34
- output_text = gr.outputs.Textbox(label="Generated SQL Query")
35
 
36
- # Create the Gradio interface
37
- gr.Interface(fn=translate_to_sql, inputs=question_input, outputs=output_text, title="Text to SQL Translator", description="Translate English questions to SQL queries.").launch()
38
 
39
- # Create the Gradio interface
40
- gr.Interface(fn=classify_text, inputs=inputs, outputs=outputs, title="Sentiment Analysis", description="Predict the sentiment of text.").launch()
 
 
 
 
 
 
 
 
22
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
23
 
24
 
25
+
26
+ def text_to_sql(text):
27
+ # Load Model with PEFT adapter
28
+ model = AutoModelForCausalLM.from_pretrained(
29
+ "jinhybr/code-llama-7b-text-to-sql",
30
+ device="cuda" if torch.cuda.is_available() else "cpu",
31
+ torch_dtype=torch.float16
32
+ )
33
+ tokenizer = AutoTokenizer.from_pretrained("jinhybr/code-llama-7b-text-to-sql")
34
+
35
+ # load into pipeline
36
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
37
+
38
+ # Define schema and user question
39
+ #schema = "CREATE TABLE table_17429402_7 (school VARCHAR, last_occ_championship VARCHAR)"
40
+ schema = 'You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.\nSCHEMA:\nCREATE TABLE table_17429402_7 (school VARCHAR, last_occ_championship VARCHAR)'
41
+ user_question = text
42
+ #user_question = 'How many schools won their last occ championship in 2006?'
43
+
44
+ # Combine schema and user question
45
+ combined_json_data = [
46
+ {'content': schema, 'role': 'system'},
47
+ {'content': user_question, 'role': 'user'}
48
+ ]
49
+
50
+ # Generate SQL query
51
  prompt = pipe.tokenizer.apply_chat_template(combined_json_data, tokenize=False, add_generation_prompt=True)
52
  outputs = pipe(prompt, max_new_tokens=256, do_sample=False, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
53
+ sql_query = outputs[0]['generated_text'][len(prompt):].strip()
 
 
 
54
 
55
+ return sql_query
 
56
 
57
+ # Create Gradio Interface
58
+ iface = gr.Interface(
59
+ fn=text_to_sql,
60
+ inputs=gr.inputs.Textbox(lines=7, label="User Question"),
61
+ outputs=gr.outputs.Textbox(label="SQL Query"),
62
+ title="Text to SQL Translator",
63
+ description="Translate text to SQL query based on the provided schema."
64
+ )
65
+ iface.launch()