Florence-VL-8B / app.py
jiuhai's picture
Update app.py
45d896e verified
import gradio as gr
import os
import torch
import spaces
from llava import conversation as conversation_lib
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
from PIL import Image
import argparse
from transformers import TextIteratorStreamer
from threading import Thread
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp'
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
argparser = argparse.ArgumentParser()
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
argparser.add_argument("--port", default="6324", type=str)
argparser.add_argument("--model-path", default="jiuhai/florence-vl-8b-sft", type=str)
argparser.add_argument("--model-base", type=str, default=None)
argparser.add_argument("--num-gpus", type=int, default=1)
argparser.add_argument("--conv-mode", type=str, default="llama3")
argparser.add_argument("--temperature", type=float, default=0.2)
argparser.add_argument("--max-new-tokens", type=int, default=512)
argparser.add_argument("--num_frames", type=int, default=16)
argparser.add_argument("--load-8bit", action="store_true")
argparser.add_argument("--load-4bit", action="store_true")
argparser.add_argument("--debug", action="store_true")
args = argparser.parse_args()
model_path = args.model_path
conv_mode = args.conv_mode
filt_invalid="cut"
model_name = get_model_name_from_path(args.model_path)
model_kwargs = {
"use_cache": False,
"trust_remote_code": True,
"torch_dtype": torch.bfloat16,
"attn_implementation": "sdpa"
}
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, device_map="cuda:0", **model_kwargs)
our_chatbot = None
def upvote_last_response(state):
return ("",) + (disable_btn,) * 3
def downvote_last_response(state):
return ("",) + (disable_btn,) * 3
def flag_last_response(state):
return ("",) + (disable_btn,) * 3
def clear_history():
state =conv_templates[conv_mode].copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, imagebox, textbox, image_process_mode):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
image = Image.open(imagebox).convert('RGB')
if imagebox is not None:
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def delete_text(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def regenerate(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
@spaces.GPU
def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
#prompt, image_args = process_image(prompt, images)
ori_prompt = prompt
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
#images = [load_image_from_base64(image) for image in images]
image_sizes = [image.size for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
images = images.to(model.device, dtype=torch.float16)
else:
images = None
image_sizes = None
image_args = {"images": images, "image_sizes": image_sizes}
else:
images = None
image_args = {}
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = 512
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
# yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter.",
container=False,
)
# title_markdown = ("""
# # Florence-VL 8B
# [[Code](TBD)] [[Model](TBD)] | πŸ“š [[Arxiv](TBD)]]
# """)
title_markdown = ("""
# Florence-VL 8B
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="Florence-VL", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
# gr.Examples(examples=[
# [f"{cur_dir}/assets/health-insurance.png", "Under which circumstances do I need to be enrolled in mandatory health insurance if I am an international student?"],
# [f"{cur_dir}/assets/leasing-apartment.png", "I don't have any 3rd party renter's insurance now. Do I need to get one for myself?"],
# [f"{cur_dir}/assets/nvidia.jpeg", "Who is the person in the middle?"],
# [f"{cur_dir}/assets/animal-compare.png", "Are these two pictures showing the same kind of animal?"],
# [f"{cur_dir}/assets/georgia-tech.jpeg", "Where is this photo taken?"]
# ], inputs=[imagebox, textbox], cache_examples=False)
gr.Examples(examples=[
[f"{cur_dir}/assets/animal-compare.png", "Are these two pictures showing the same kind of animal?"],
[f"{cur_dir}/assets/funny_image.jpeg", "Why this image funny?"],
[f"{cur_dir}/assets/leasing-apartment.png", "I don't have any 3rd party renter's insurance now. Do I need to get one for myself?"],
[f"{cur_dir}/assets/cat.png", "What's kind of cat in the picture?"],
[f"{cur_dir}/assets/health-insurance.png", "Under which circumstances do I need to be enrolled in mandatory health insurance if I am an international student?"],
], inputs=[imagebox, textbox], cache_examples=False)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Chatbot",
height=650,
layout="panel",
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=False)
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=False)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear", interactive=False)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
downvote_btn.click(
downvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
flag_btn.click(
flag_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
regenerate_btn.click(
delete_text,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
textbox.submit(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
submit_btn.click(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
demo.queue(
status_update_rate=10,
api_open=False
).launch()