CLIPInverter / app.py
johnberg's picture
Update app.py (#2)
9207d7c verified
import torch
from argparse import Namespace
import torchvision.transforms as transforms
import clip
import numpy as np
import sys
sys.path.append(".")
sys.path.append("..")
from models.e4e_features import pSp
from adapter.adapter_decoder import CLIPAdapterWithDecoder
import gradio as gr
def tensor2im(var):
var = var.cpu().detach().transpose(0, 2).transpose(0, 1).numpy()
var = ((var + 1) / 2)
var[var < 0] = 0
var[var > 1] = 1
var = var * 255
return var.astype('uint8')
def run_alignment(image_path):
import dlib
from align_faces_parallel import align_face
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
aligned_image = align_face(image_path, predictor=predictor)
# print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
input_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
model_path = 'pretrained_faces.pt'
e4e_path = 'e4e_ffhq_encode.pt'
ckpt = torch.load(model_path, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path
opts['pretrained_e4e_path'] = e4e_path
device = 'cuda' if torch.cuda.is_available() else 'cpu'
opts['device'] = device
opts = Namespace(**opts)
encoder = pSp(opts)
encoder.eval()
encoder.to(device)
adapter = CLIPAdapterWithDecoder(opts)
adapter.eval()
adapter.to(device)
clip_model, _ = clip.load("ViT-B/32", device=device)
def manipulate(input_image, caption):
if not isinstance(input_image, Image.Image):
input_image = Image.open(input_image).convert('RGB')
else:
input_image = input_image.convert('RGB')
aligned_image = run_alignment(input_image)
input_image = input_transforms(aligned_image)
input_image = input_image.unsqueeze(0)
text_input = clip.tokenize(caption)
text_input = text_input.to(device)
input_image = input_image.to(device).float()
with torch.no_grad():
text_features = clip_model.encode_text(text_input).float()
w, features = encoder.forward(input_image, return_latents=True)
features = adapter.adapter(features, text_features)
w_hat = w + 0.1 * encoder.forward_features(features)
result_tensor, _ = adapter.decoder([w_hat], input_is_latent=True, return_latents=False, randomize_noise=False, truncation=1, txt_embed=text_features)
result_tensor = result_tensor.squeeze(0)
result_image = tensor2im(result_tensor)
return result_image
gr.Interface(fn=manipulate,
inputs=[gr.Image(type="pil"), "text"],
outputs="image",
examples=[['example.jpg', "He has mustache"]],
title="CLIPInverter").launch()