jon-pascal
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -344,9 +344,11 @@ def restore_on_gpu(
|
|
344 |
torch.cuda.set_device(SUPIR_device)
|
345 |
|
346 |
with torch.no_grad():
|
347 |
-
|
|
|
|
|
348 |
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
349 |
-
LQ =
|
350 |
LQ = np.power(LQ, gamma_correction)
|
351 |
LQ *= 255.0
|
352 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
@@ -367,8 +369,8 @@ def restore_on_gpu(
|
|
367 |
results = [x_samples[i] for i in range(num_samples)]
|
368 |
torch.cuda.empty_cache()
|
369 |
|
370 |
-
input_height, input_width, input_channel =
|
371 |
-
result_height, result_width, result_channel =
|
372 |
|
373 |
print('Restoration completed.')
|
374 |
end = time.time()
|
|
|
344 |
torch.cuda.set_device(SUPIR_device)
|
345 |
|
346 |
with torch.no_grad():
|
347 |
+
# Convert input image to NumPy array and ensure it has 3 channels
|
348 |
+
input_image = HWC3(np.array(Image.open(input_image_path)))
|
349 |
+
|
350 |
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
351 |
+
LQ = input_image / 255.0
|
352 |
LQ = np.power(LQ, gamma_correction)
|
353 |
LQ *= 255.0
|
354 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
|
|
369 |
results = [x_samples[i] for i in range(num_samples)]
|
370 |
torch.cuda.empty_cache()
|
371 |
|
372 |
+
input_height, input_width, input_channel = input_image.shape
|
373 |
+
result_height, result_width, result_channel = results[0].shape
|
374 |
|
375 |
print('Restoration completed.')
|
376 |
end = time.time()
|