Spaces:
Running
Running
File size: 12,404 Bytes
c53ddec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import os
import logging
import math
from functools import reduce
from collections import defaultdict
import json
from timeit import default_timer
from tqdm import trange, tqdm
import numpy as np
import torch
from disvae.models.losses import get_loss_f
from disvae.utils.math import log_density_gaussian
from disvae.utils.modelIO import save_metadata
TEST_LOSSES_FILE = "test_losses.log"
METRICS_FILENAME = "metrics.log"
METRIC_HELPERS_FILE = "metric_helpers.pth"
class Evaluator:
"""
Class to handle training of model.
Parameters
----------
model: disvae.vae.VAE
loss_f: disvae.models.BaseLoss
Loss function.
device: torch.device, optional
Device on which to run the code.
logger: logging.Logger, optional
Logger.
save_dir : str, optional
Directory for saving logs.
is_progress_bar: bool, optional
Whether to use a progress bar for training.
"""
def __init__(self, model, loss_f,
device=torch.device("cpu"),
logger=logging.getLogger(__name__),
save_dir="results",
is_progress_bar=True):
self.device = device
self.loss_f = loss_f
self.model = model.to(self.device)
self.logger = logger
self.save_dir = save_dir
self.is_progress_bar = is_progress_bar
self.logger.info("Testing Device: {}".format(self.device))
def __call__(self, data_loader, is_metrics=False, is_losses=True):
"""Compute all test losses.
Parameters
----------
data_loader: torch.utils.data.DataLoader
is_metrics: bool, optional
Whether to compute and store the disentangling metrics.
is_losses: bool, optional
Whether to compute and store the test losses.
"""
start = default_timer()
is_still_training = self.model.training
self.model.eval()
metric, losses = None, None
if is_metrics:
self.logger.info('Computing metrics...')
metrics = self.compute_metrics(data_loader)
self.logger.info('Losses: {}'.format(metrics))
save_metadata(metrics, self.save_dir, filename=METRICS_FILENAME)
if is_losses:
self.logger.info('Computing losses...')
losses = self.compute_losses(data_loader)
self.logger.info('Losses: {}'.format(losses))
save_metadata(losses, self.save_dir, filename=TEST_LOSSES_FILE)
if is_still_training:
self.model.train()
self.logger.info('Finished evaluating after {:.1f} min.'.format((default_timer() - start) / 60))
return metric, losses
def compute_losses(self, dataloader):
"""Compute all test losses.
Parameters
----------
data_loader: torch.utils.data.DataLoader
"""
storer = defaultdict(list)
for data, _ in tqdm(dataloader, leave=False, disable=not self.is_progress_bar):
data = data.to(self.device)
try:
recon_batch, latent_dist, latent_sample = self.model(data)
_ = self.loss_f(data, recon_batch, latent_dist, self.model.training,
storer, latent_sample=latent_sample)
except ValueError:
# for losses that use multiple optimizers (e.g. Factor)
_ = self.loss_f.call_optimize(data, self.model, None, storer)
losses = {k: sum(v) / len(dataloader) for k, v in storer.items()}
return losses
def compute_metrics(self, dataloader):
"""Compute all the metrics.
Parameters
----------
data_loader: torch.utils.data.DataLoader
"""
try:
lat_sizes = dataloader.dataset.lat_sizes
lat_names = dataloader.dataset.lat_names
except AttributeError:
raise ValueError("Dataset needs to have known true factors of variations to compute the metric. This does not seem to be the case for {}".format(type(dataloader.__dict__["dataset"]).__name__))
self.logger.info("Computing the empirical distribution q(z|x).")
samples_zCx, params_zCx = self._compute_q_zCx(dataloader)
len_dataset, latent_dim = samples_zCx.shape
self.logger.info("Estimating the marginal entropy.")
# marginal entropy H(z_j)
H_z = self._estimate_latent_entropies(samples_zCx, params_zCx)
# conditional entropy H(z|v)
samples_zCx = samples_zCx.view(*lat_sizes, latent_dim)
params_zCx = tuple(p.view(*lat_sizes, latent_dim) for p in params_zCx)
H_zCv = self._estimate_H_zCv(samples_zCx, params_zCx, lat_sizes, lat_names)
H_z = H_z.cpu()
H_zCv = H_zCv.cpu()
# I[z_j;v_k] = E[log \sum_x q(z_j|x)p(x|v_k)] + H[z_j] = - H[z_j|v_k] + H[z_j]
mut_info = - H_zCv + H_z
sorted_mut_info = torch.sort(mut_info, dim=1, descending=True)[0].clamp(min=0)
metric_helpers = {'marginal_entropies': H_z, 'cond_entropies': H_zCv}
mig = self._mutual_information_gap(sorted_mut_info, lat_sizes, storer=metric_helpers)
aam = self._axis_aligned_metric(sorted_mut_info, storer=metric_helpers)
metrics = {'MIG': mig.item(), 'AAM': aam.item()}
torch.save(metric_helpers, os.path.join(self.save_dir, METRIC_HELPERS_FILE))
return metrics
def _mutual_information_gap(self, sorted_mut_info, lat_sizes, storer=None):
"""Compute the mutual information gap as in [1].
References
----------
[1] Chen, Tian Qi, et al. "Isolating sources of disentanglement in variational
autoencoders." Advances in Neural Information Processing Systems. 2018.
"""
# difference between the largest and second largest mutual info
delta_mut_info = sorted_mut_info[:, 0] - sorted_mut_info[:, 1]
# NOTE: currently only works if balanced dataset for every factor of variation
# then H(v_k) = - |V_k|/|V_k| log(1/|V_k|) = log(|V_k|)
H_v = torch.from_numpy(lat_sizes).float().log()
mig_k = delta_mut_info / H_v
mig = mig_k.mean() # mean over factor of variations
if storer is not None:
storer["mig_k"] = mig_k
storer["mig"] = mig
return mig
def _axis_aligned_metric(self, sorted_mut_info, storer=None):
"""Compute the proposed axis aligned metrics."""
numerator = (sorted_mut_info[:, 0] - sorted_mut_info[:, 1:].sum(dim=1)).clamp(min=0)
aam_k = numerator / sorted_mut_info[:, 0]
aam_k[torch.isnan(aam_k)] = 0
aam = aam_k.mean() # mean over factor of variations
if storer is not None:
storer["aam_k"] = aam_k
storer["aam"] = aam
return aam
def _compute_q_zCx(self, dataloader):
"""Compute the empiricall disitribution of q(z|x).
Parameter
---------
dataloader: torch.utils.data.DataLoader
Batch data iterator.
Return
------
samples_zCx: torch.tensor
Tensor of shape (len_dataset, latent_dim) containing a sample of
q(z|x) for every x in the dataset.
params_zCX: tuple of torch.Tensor
Sufficient statistics q(z|x) for each training example. E.g. for
gaussian (mean, log_var) each of shape : (len_dataset, latent_dim).
"""
len_dataset = len(dataloader.dataset)
latent_dim = self.model.latent_dim
n_suff_stat = 2
q_zCx = torch.zeros(len_dataset, latent_dim, n_suff_stat, device=self.device)
n = 0
with torch.no_grad():
for x, label in dataloader:
batch_size = x.size(0)
idcs = slice(n, n + batch_size)
q_zCx[idcs, :, 0], q_zCx[idcs, :, 1] = self.model.encoder(x.to(self.device))
n += batch_size
params_zCX = q_zCx.unbind(-1)
samples_zCx = self.model.reparameterize(*params_zCX)
return samples_zCx, params_zCX
def _estimate_latent_entropies(self, samples_zCx, params_zCX,
n_samples=10000):
r"""Estimate :math:`H(z_j) = E_{q(z_j)} [-log q(z_j)] = E_{p(x)} E_{q(z_j|x)} [-log q(z_j)]`
using the emperical distribution of :math:`p(x)`.
Note
----
- the expectation over the emperical distributio is: :math:`q(z) = 1/N sum_{n=1}^N q(z|x_n)`.
- we assume that q(z|x) is factorial i.e. :math:`q(z|x) = \prod_j q(z_j|x)`.
- computes numerically stable NLL: :math:`- log q(z) = log N - logsumexp_n=1^N log q(z|x_n)`.
Parameters
----------
samples_zCx: torch.tensor
Tensor of shape (len_dataset, latent_dim) containing a sample of
q(z|x) for every x in the dataset.
params_zCX: tuple of torch.Tensor
Sufficient statistics q(z|x) for each training example. E.g. for
gaussian (mean, log_var) each of shape : (len_dataset, latent_dim).
n_samples: int, optional
Number of samples to use to estimate the entropies.
Return
------
H_z: torch.Tensor
Tensor of shape (latent_dim) containing the marginal entropies H(z_j)
"""
len_dataset, latent_dim = samples_zCx.shape
device = samples_zCx.device
H_z = torch.zeros(latent_dim, device=device)
# sample from p(x)
samples_x = torch.randperm(len_dataset, device=device)[:n_samples]
# sample from p(z|x)
samples_zCx = samples_zCx.index_select(0, samples_x).view(latent_dim, n_samples)
mini_batch_size = 10
samples_zCx = samples_zCx.expand(len_dataset, latent_dim, n_samples)
mean = params_zCX[0].unsqueeze(-1).expand(len_dataset, latent_dim, n_samples)
log_var = params_zCX[1].unsqueeze(-1).expand(len_dataset, latent_dim, n_samples)
log_N = math.log(len_dataset)
with trange(n_samples, leave=False, disable=self.is_progress_bar) as t:
for k in range(0, n_samples, mini_batch_size):
# log q(z_j|x) for n_samples
idcs = slice(k, k + mini_batch_size)
log_q_zCx = log_density_gaussian(samples_zCx[..., idcs],
mean[..., idcs],
log_var[..., idcs])
# numerically stable log q(z_j) for n_samples:
# log q(z_j) = -log N + logsumexp_{n=1}^N log q(z_j|x_n)
# As we don't know q(z) we appoximate it with the monte carlo
# expectation of q(z_j|x_n) over x. => fix a single z and look at
# proba for every x to generate it. n_samples is not used here !
log_q_z = -log_N + torch.logsumexp(log_q_zCx, dim=0, keepdim=False)
# H(z_j) = E_{z_j}[- log q(z_j)]
# mean over n_samples (i.e. dimesnion 1 because already summed over 0).
H_z += (-log_q_z).sum(1)
t.update(mini_batch_size)
H_z /= n_samples
return H_z
def _estimate_H_zCv(self, samples_zCx, params_zCx, lat_sizes, lat_names):
"""Estimate conditional entropies :math:`H[z|v]`."""
latent_dim = samples_zCx.size(-1)
len_dataset = reduce((lambda x, y: x * y), lat_sizes)
H_zCv = torch.zeros(len(lat_sizes), latent_dim, device=self.device)
for i_fac_var, (lat_size, lat_name) in enumerate(zip(lat_sizes, lat_names)):
idcs = [slice(None)] * len(lat_sizes)
for i in range(lat_size):
self.logger.info("Estimating conditional entropies for the {}th value of {}.".format(i, lat_name))
idcs[i_fac_var] = i
# samples from q(z,x|v)
samples_zxCv = samples_zCx[idcs].contiguous().view(len_dataset // lat_size,
latent_dim)
params_zxCv = tuple(p[idcs].contiguous().view(len_dataset // lat_size, latent_dim)
for p in params_zCx)
H_zCv[i_fac_var] += self._estimate_latent_entropies(samples_zxCv, params_zxCv
) / lat_size
return H_zCv
|