File size: 12,404 Bytes
c53ddec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import logging
import math
from functools import reduce
from collections import defaultdict
import json
from timeit import default_timer

from tqdm import trange, tqdm
import numpy as np
import torch

from disvae.models.losses import get_loss_f
from disvae.utils.math import log_density_gaussian
from disvae.utils.modelIO import save_metadata

TEST_LOSSES_FILE = "test_losses.log"
METRICS_FILENAME = "metrics.log"
METRIC_HELPERS_FILE = "metric_helpers.pth"


class Evaluator:
    """
    Class to handle training of model.

    Parameters
    ----------
    model: disvae.vae.VAE

    loss_f: disvae.models.BaseLoss
        Loss function.

    device: torch.device, optional
        Device on which to run the code.

    logger: logging.Logger, optional
        Logger.

    save_dir : str, optional
        Directory for saving logs.

    is_progress_bar: bool, optional
        Whether to use a progress bar for training.
    """

    def __init__(self, model, loss_f,
                 device=torch.device("cpu"),
                 logger=logging.getLogger(__name__),
                 save_dir="results",
                 is_progress_bar=True):

        self.device = device
        self.loss_f = loss_f
        self.model = model.to(self.device)
        self.logger = logger
        self.save_dir = save_dir
        self.is_progress_bar = is_progress_bar
        self.logger.info("Testing Device: {}".format(self.device))

    def __call__(self, data_loader, is_metrics=False, is_losses=True):
        """Compute all test losses.

        Parameters
        ----------
        data_loader: torch.utils.data.DataLoader

        is_metrics: bool, optional
            Whether to compute and store the disentangling metrics.

        is_losses: bool, optional
            Whether to compute and store the test losses.
        """
        start = default_timer()
        is_still_training = self.model.training
        self.model.eval()

        metric, losses = None, None
        if is_metrics:
            self.logger.info('Computing metrics...')
            metrics = self.compute_metrics(data_loader)
            self.logger.info('Losses: {}'.format(metrics))
            save_metadata(metrics, self.save_dir, filename=METRICS_FILENAME)

        if is_losses:
            self.logger.info('Computing losses...')
            losses = self.compute_losses(data_loader)
            self.logger.info('Losses: {}'.format(losses))
            save_metadata(losses, self.save_dir, filename=TEST_LOSSES_FILE)

        if is_still_training:
            self.model.train()

        self.logger.info('Finished evaluating after {:.1f} min.'.format((default_timer() - start) / 60))

        return metric, losses

    def compute_losses(self, dataloader):
        """Compute all test losses.

        Parameters
        ----------
        data_loader: torch.utils.data.DataLoader
        """
        storer = defaultdict(list)
        for data, _ in tqdm(dataloader, leave=False, disable=not self.is_progress_bar):
            data = data.to(self.device)

            try:
                recon_batch, latent_dist, latent_sample = self.model(data)
                _ = self.loss_f(data, recon_batch, latent_dist, self.model.training,
                                storer, latent_sample=latent_sample)
            except ValueError:
                # for losses that use multiple optimizers (e.g. Factor)
                _ = self.loss_f.call_optimize(data, self.model, None, storer)

            losses = {k: sum(v) / len(dataloader) for k, v in storer.items()}
            return losses

    def compute_metrics(self, dataloader):
        """Compute all the metrics.

        Parameters
        ----------
        data_loader: torch.utils.data.DataLoader
        """
        try:
            lat_sizes = dataloader.dataset.lat_sizes
            lat_names = dataloader.dataset.lat_names
        except AttributeError:
            raise ValueError("Dataset needs to have known true factors of variations to compute the metric. This does not seem to be the case for {}".format(type(dataloader.__dict__["dataset"]).__name__))

        self.logger.info("Computing the empirical distribution q(z|x).")
        samples_zCx, params_zCx = self._compute_q_zCx(dataloader)
        len_dataset, latent_dim = samples_zCx.shape

        self.logger.info("Estimating the marginal entropy.")
        # marginal entropy H(z_j)
        H_z = self._estimate_latent_entropies(samples_zCx, params_zCx)

        # conditional entropy H(z|v)
        samples_zCx = samples_zCx.view(*lat_sizes, latent_dim)
        params_zCx = tuple(p.view(*lat_sizes, latent_dim) for p in params_zCx)
        H_zCv = self._estimate_H_zCv(samples_zCx, params_zCx, lat_sizes, lat_names)

        H_z = H_z.cpu()
        H_zCv = H_zCv.cpu()

        # I[z_j;v_k] = E[log \sum_x q(z_j|x)p(x|v_k)] + H[z_j] = - H[z_j|v_k] + H[z_j]
        mut_info = - H_zCv + H_z
        sorted_mut_info = torch.sort(mut_info, dim=1, descending=True)[0].clamp(min=0)

        metric_helpers = {'marginal_entropies': H_z, 'cond_entropies': H_zCv}
        mig = self._mutual_information_gap(sorted_mut_info, lat_sizes, storer=metric_helpers)
        aam = self._axis_aligned_metric(sorted_mut_info, storer=metric_helpers)

        metrics = {'MIG': mig.item(), 'AAM': aam.item()}
        torch.save(metric_helpers, os.path.join(self.save_dir, METRIC_HELPERS_FILE))

        return metrics

    def _mutual_information_gap(self, sorted_mut_info, lat_sizes, storer=None):
        """Compute the mutual information gap as in [1].

        References
        ----------
           [1] Chen, Tian Qi, et al. "Isolating sources of disentanglement in variational
           autoencoders." Advances in Neural Information Processing Systems. 2018.
        """
        # difference between the largest and second largest mutual info
        delta_mut_info = sorted_mut_info[:, 0] - sorted_mut_info[:, 1]
        # NOTE: currently only works if balanced dataset for every factor of variation
        # then H(v_k) = - |V_k|/|V_k| log(1/|V_k|) = log(|V_k|)
        H_v = torch.from_numpy(lat_sizes).float().log()
        mig_k = delta_mut_info / H_v
        mig = mig_k.mean()  # mean over factor of variations

        if storer is not None:
            storer["mig_k"] = mig_k
            storer["mig"] = mig

        return mig

    def _axis_aligned_metric(self, sorted_mut_info, storer=None):
        """Compute the proposed axis aligned metrics."""
        numerator = (sorted_mut_info[:, 0] - sorted_mut_info[:, 1:].sum(dim=1)).clamp(min=0)
        aam_k = numerator / sorted_mut_info[:, 0]
        aam_k[torch.isnan(aam_k)] = 0
        aam = aam_k.mean()  # mean over factor of variations

        if storer is not None:
            storer["aam_k"] = aam_k
            storer["aam"] = aam

        return aam

    def _compute_q_zCx(self, dataloader):
        """Compute the empiricall disitribution of q(z|x).

        Parameter
        ---------
        dataloader: torch.utils.data.DataLoader
            Batch data iterator.

        Return
        ------
        samples_zCx: torch.tensor
            Tensor of shape (len_dataset, latent_dim) containing a sample of
            q(z|x) for every x in the dataset.

        params_zCX: tuple of torch.Tensor
            Sufficient statistics q(z|x) for each training example. E.g. for
            gaussian (mean, log_var) each of shape : (len_dataset, latent_dim).
        """
        len_dataset = len(dataloader.dataset)
        latent_dim = self.model.latent_dim
        n_suff_stat = 2

        q_zCx = torch.zeros(len_dataset, latent_dim, n_suff_stat, device=self.device)

        n = 0
        with torch.no_grad():
            for x, label in dataloader:
                batch_size = x.size(0)
                idcs = slice(n, n + batch_size)
                q_zCx[idcs, :, 0], q_zCx[idcs, :, 1] = self.model.encoder(x.to(self.device))
                n += batch_size

        params_zCX = q_zCx.unbind(-1)
        samples_zCx = self.model.reparameterize(*params_zCX)

        return samples_zCx, params_zCX

    def _estimate_latent_entropies(self, samples_zCx, params_zCX,
                                   n_samples=10000):
        r"""Estimate :math:`H(z_j) = E_{q(z_j)} [-log q(z_j)] = E_{p(x)} E_{q(z_j|x)} [-log q(z_j)]`
        using the emperical distribution of :math:`p(x)`.

        Note
        ----
        - the expectation over the emperical distributio is: :math:`q(z) = 1/N sum_{n=1}^N q(z|x_n)`.
        - we assume that q(z|x) is factorial i.e. :math:`q(z|x) = \prod_j q(z_j|x)`.
        - computes numerically stable NLL: :math:`- log q(z) = log N - logsumexp_n=1^N log q(z|x_n)`.

        Parameters
        ----------
        samples_zCx: torch.tensor
            Tensor of shape (len_dataset, latent_dim) containing a sample of
            q(z|x) for every x in the dataset.

        params_zCX: tuple of torch.Tensor
            Sufficient statistics q(z|x) for each training example. E.g. for
            gaussian (mean, log_var) each of shape : (len_dataset, latent_dim).

        n_samples: int, optional
            Number of samples to use to estimate the entropies.

        Return
        ------
        H_z: torch.Tensor
            Tensor of shape (latent_dim) containing the marginal entropies H(z_j)
        """
        len_dataset, latent_dim = samples_zCx.shape
        device = samples_zCx.device
        H_z = torch.zeros(latent_dim, device=device)

        # sample from p(x)
        samples_x = torch.randperm(len_dataset, device=device)[:n_samples]
        # sample from p(z|x)
        samples_zCx = samples_zCx.index_select(0, samples_x).view(latent_dim, n_samples)

        mini_batch_size = 10
        samples_zCx = samples_zCx.expand(len_dataset, latent_dim, n_samples)
        mean = params_zCX[0].unsqueeze(-1).expand(len_dataset, latent_dim, n_samples)
        log_var = params_zCX[1].unsqueeze(-1).expand(len_dataset, latent_dim, n_samples)
        log_N = math.log(len_dataset)
        with trange(n_samples, leave=False, disable=self.is_progress_bar) as t:
            for k in range(0, n_samples, mini_batch_size):
                # log q(z_j|x) for n_samples
                idcs = slice(k, k + mini_batch_size)
                log_q_zCx = log_density_gaussian(samples_zCx[..., idcs],
                                                 mean[..., idcs],
                                                 log_var[..., idcs])
                # numerically stable log q(z_j) for n_samples:
                # log q(z_j) = -log N + logsumexp_{n=1}^N log q(z_j|x_n)
                # As we don't know q(z) we appoximate it with the monte carlo
                # expectation of q(z_j|x_n) over x. => fix a single z and look at
                # proba for every x to generate it. n_samples is not used here !
                log_q_z = -log_N + torch.logsumexp(log_q_zCx, dim=0, keepdim=False)
                # H(z_j) = E_{z_j}[- log q(z_j)]
                # mean over n_samples (i.e. dimesnion 1 because already summed over 0).
                H_z += (-log_q_z).sum(1)

                t.update(mini_batch_size)

        H_z /= n_samples

        return H_z

    def _estimate_H_zCv(self, samples_zCx, params_zCx, lat_sizes, lat_names):
        """Estimate conditional entropies :math:`H[z|v]`."""
        latent_dim = samples_zCx.size(-1)
        len_dataset = reduce((lambda x, y: x * y), lat_sizes)
        H_zCv = torch.zeros(len(lat_sizes), latent_dim, device=self.device)
        for i_fac_var, (lat_size, lat_name) in enumerate(zip(lat_sizes, lat_names)):
            idcs = [slice(None)] * len(lat_sizes)
            for i in range(lat_size):
                self.logger.info("Estimating conditional entropies for the {}th value of {}.".format(i, lat_name))
                idcs[i_fac_var] = i
                # samples from q(z,x|v)
                samples_zxCv = samples_zCx[idcs].contiguous().view(len_dataset // lat_size,
                                                                   latent_dim)
                params_zxCv = tuple(p[idcs].contiguous().view(len_dataset // lat_size, latent_dim)
                                    for p in params_zCx)

                H_zCv[i_fac_var] += self._estimate_latent_entropies(samples_zxCv, params_zxCv
                                                                    ) / lat_size
        return H_zCv