File size: 6,079 Bytes
c53ddec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# import imageio
import logging
import os
from collections import defaultdict
from timeit import default_timer

import torch
from torch.nn import functional as F
from tqdm import trange

from disvae.utils.modelIO import save_model

TRAIN_LOSSES_LOGFILE = "train_losses.log"


class Trainer:
    """
    Class to handle training of model.

    Parameters
    ----------
    model: disvae.vae.VAE

    optimizer: torch.optim.Optimizer

    loss_f: disvae.models.BaseLoss
        Loss function.

    device: torch.device, optional
        Device on which to run the code.

    logger: logging.Logger, optional
        Logger.

    save_dir : str, optional
        Directory for saving logs.

    gif_visualizer : viz.Visualizer, optional
        Gif Visualizer that should return samples at every epochs.

    is_progress_bar: bool, optional
        Whether to use a progress bar for training.
    """

    def __init__(
        self,
        model,
        optimizer,
        loss_f,
        device=torch.device("cpu"),
        logger=logging.getLogger(__name__),
        save_dir="results",
        gif_visualizer=None,
        is_progress_bar=True,
    ):
        self.device = device
        self.model = model.to(self.device)
        self.loss_f = loss_f
        self.optimizer = optimizer
        self.save_dir = save_dir
        self.is_progress_bar = is_progress_bar
        self.logger = logger
        self.losses_logger = LossesLogger(
            os.path.join(self.save_dir, TRAIN_LOSSES_LOGFILE)
        )
        self.gif_visualizer = gif_visualizer
        self.logger.info("Training Device: {}".format(self.device))

    def __call__(self, data_loader, epochs=10, checkpoint_every=10):
        """
        Trains the model.

        Parameters
        ----------
        data_loader: torch.utils.data.DataLoader

        epochs: int, optional
            Number of epochs to train the model for.

        checkpoint_every: int, optional
            Save a checkpoint of the trained model every n epoch.
        """
        start = default_timer()
        self.model.train()
        for epoch in range(epochs):
            storer = defaultdict(list)
            mean_epoch_loss = self._train_epoch(data_loader, storer, epoch)
            self.logger.info(
                "Epoch: {} Average loss per image: {:.2f}".format(
                    epoch + 1, mean_epoch_loss
                )
            )
            self.losses_logger.log(epoch, storer)

            if self.gif_visualizer is not None:
                self.gif_visualizer()

            if epoch % checkpoint_every == 0:
                save_model(
                    self.model, self.save_dir, filename="model-{}.pt".format(epoch)
                )

        if self.gif_visualizer is not None:
            self.gif_visualizer.save_reset()

        self.model.eval()

        delta_time = (default_timer() - start) / 60
        self.logger.info("Finished training after {:.1f} min.".format(delta_time))

    def _train_epoch(self, data_loader, storer, epoch):
        """
        Trains the model for one epoch.

        Parameters
        ----------
        data_loader: torch.utils.data.DataLoader

        storer: dict
            Dictionary in which to store important variables for vizualisation.

        epoch: int
            Epoch number

        Return
        ------
        mean_epoch_loss: float
            Mean loss per image
        """
        epoch_loss = 0.0
        kwargs = dict(
            desc="Epoch {}".format(epoch + 1),
            leave=False,
            disable=not self.is_progress_bar,
        )
        with trange(len(data_loader), **kwargs) as t:
            for _, (data, _) in enumerate(data_loader):
                iter_loss = self._train_iteration(data, storer)
                epoch_loss += iter_loss

                t.set_postfix(loss=iter_loss)
                t.update()

        mean_epoch_loss = epoch_loss / len(data_loader)
        return mean_epoch_loss

    def _train_iteration(self, data, storer):
        """
        Trains the model for one iteration on a batch of data.

        Parameters
        ----------
        data: torch.Tensor
            A batch of data. Shape : (batch_size, channel, height, width).

        storer: dict
            Dictionary in which to store important variables for vizualisation.
        """
        batch_size, channel, height, width = data.size()
        data = data.to(self.device)

        try:
            recon_batch, latent_dist, latent_sample = self.model(data)
            loss = self.loss_f(
                data,
                recon_batch,
                latent_dist,
                self.model.training,
                storer,
                latent_sample=latent_sample,
            )
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

        except ValueError:
            # for losses that use multiple optimizers (e.g. Factor)
            loss = self.loss_f.call_optimize(data, self.model, self.optimizer, storer)

        return loss.item()


class LossesLogger(object):
    """Class definition for objects to write data to log files in a
    form which is then easy to be plotted.
    """

    def __init__(self, file_path_name):
        """Create a logger to store information for plotting."""
        if os.path.isfile(file_path_name):
            os.remove(file_path_name)

        self.logger = logging.getLogger("losses_logger")
        self.logger.setLevel(1)  # always store
        file_handler = logging.FileHandler(file_path_name)
        file_handler.setLevel(1)
        self.logger.addHandler(file_handler)

        header = ",".join(["Epoch", "Loss", "Value"])
        self.logger.debug(header)

    def log(self, epoch, losses_storer):
        """Write to the log file"""
        for k, v in losses_storer.items():
            log_string = ",".join(str(item) for item in [epoch, k, mean(v)])
            self.logger.debug(log_string)


# HELPERS
def mean(l):
    """Compute the mean of a list"""
    return sum(l) / len(l)