vae_celeba / app.py
Jonas Becker
1st try
c53ddec
raw
history blame
1.05 kB
import numpy as np
import streamlit as st
import torch
import disvae
import transforms as trans
P_MODEL = "models/btcvae_celeba"
# Decode Funktion --------------------------------------------------
sorter = trans.LatentSorter(disvae.get_kl_dict(P_MODEL))
vae = disvae.load_model(P_MODEL)
scaler = trans.MinMaxScaler(_min=torch.tensor([1.3]),_max=torch.tensor([4.0]),min_norm=0.3,max_norm=0.6)
imaging = trans.SumField()
_dec = trans.sequential_function(
sorter.inv,
vae.decoder
)
def decode(latent):
with torch.no_grad():
return trans.np_sample(_dec)(latent)
# GUI -----------------------------------------------------------
latent_vector = np.array([st.slider(f"L{l}",min_value=-3.0,max_value=3.0,value=0.0) for l in range(3)])
latent_vector = np.concatenate([latent_vector,np.zeros(7)],axis=0)
value = decode(latent_vector)
value = np.swapaxes(np.swapaxes(value, 0, 2), 0, 1)# * 255
# st.write(value)
st.image(value, use_column_width="always")
# x = st.slider("Select a value")
# st.write(x, "squared is", x * x)