Spaces:
Sleeping
Sleeping
""" | |
Module containing discriminator for FactorVAE. | |
""" | |
from torch import nn | |
from disvae.utils.initialization import weights_init | |
class Discriminator(nn.Module): | |
def __init__(self, | |
neg_slope=0.2, | |
latent_dim=10, | |
hidden_units=1000): | |
"""Discriminator proposed in [1]. | |
Parameters | |
---------- | |
neg_slope: float | |
Hyperparameter for the Leaky ReLu | |
latent_dim : int | |
Dimensionality of latent variables. | |
hidden_units: int | |
Number of hidden units in the MLP | |
Model Architecture | |
------------ | |
- 6 layer multi-layer perceptron, each with 1000 hidden units | |
- Leaky ReLu activations | |
- Output 2 logits | |
References: | |
[1] Kim, Hyunjik, and Andriy Mnih. "Disentangling by factorising." | |
arXiv preprint arXiv:1802.05983 (2018). | |
""" | |
super(Discriminator, self).__init__() | |
# Activation parameters | |
self.neg_slope = neg_slope | |
self.leaky_relu = nn.LeakyReLU(self.neg_slope, True) | |
# Layer parameters | |
self.z_dim = latent_dim | |
self.hidden_units = hidden_units | |
# theoretically 1 with sigmoid but gives bad results => use 2 and softmax | |
out_units = 2 | |
# Fully connected layers | |
self.lin1 = nn.Linear(self.z_dim, hidden_units) | |
self.lin2 = nn.Linear(hidden_units, hidden_units) | |
self.lin3 = nn.Linear(hidden_units, hidden_units) | |
self.lin4 = nn.Linear(hidden_units, hidden_units) | |
self.lin5 = nn.Linear(hidden_units, hidden_units) | |
self.lin6 = nn.Linear(hidden_units, out_units) | |
self.reset_parameters() | |
def forward(self, z): | |
# Fully connected layers with leaky ReLu activations | |
z = self.leaky_relu(self.lin1(z)) | |
z = self.leaky_relu(self.lin2(z)) | |
z = self.leaky_relu(self.lin3(z)) | |
z = self.leaky_relu(self.lin4(z)) | |
z = self.leaky_relu(self.lin5(z)) | |
z = self.lin6(z) | |
return z | |
def reset_parameters(self): | |
self.apply(weights_init) | |