jonathang's picture
Update app.py
10692da
raw
history blame
3.23 kB
import gradio as gr
import os
import gc
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from collections import Counter
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.regularizers import l2
from keras.constraints import max_norm
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.utils import pad_sequences
from keras.callbacks import EarlyStopping
from keras.layers import Input, Dense, Dropout, Flatten, Activation
from keras.layers import Conv1D, Add, MaxPooling1D, BatchNormalization
from keras.layers import Embedding, Bidirectional, LSTM, CuDNNLSTM, GlobalMaxPooling1D
import tensorflow as tf
from huggingface_hub import hf_hub_url, cached_download
class Sequence:
codes = {c: i+1 for i, c in enumerate(['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'])}
@classmethod
def integer_encoding(cls, data):
"""
- Encodes code sequence to integer values.
- 20 common amino acids are taken into consideration
and remaining four are categorized as 0.
"""
return np.array([cls.codes.get(code, 0) for code in data])
@classmethod
def prepare(cls, sequence):
sequence = sequence.strip().upper()
ie = cls.integer_encoding(sequence)
max_length = 100
padded_ie = pad_sequences([ie], maxlen=max_length, padding='post', truncating='post')
all_ohe = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] + [0]*(100-21))
return to_categorical(np.array([padded_ie[0], all_ohe]))[0]
def residual_block(data, filters, d_rate):
"""
_data: input
_filters: convolution filters
_d_rate: dilation rate
"""
shortcut = data
bn1 = BatchNormalization()(data)
act1 = Activation('relu')(bn1)
conv1 = Conv1D(filters, 1, dilation_rate=d_rate, padding='same', kernel_regularizer=l2(0.001))(act1)
#bottleneck convolution
bn2 = BatchNormalization()(conv1)
act2 = Activation('relu')(bn2)
conv2 = Conv1D(filters, 3, padding='same', kernel_regularizer=l2(0.001))(act2)
#skip connection
x = Add()([conv2, shortcut])
return x
def get_model():
# model
x_input = Input(shape=(100, 21))
#initial conv
conv = Conv1D(128, 1, padding='same')(x_input)
# per-residue representation
res1 = residual_block(conv, 128, 2)
res2 = residual_block(res1, 128, 3)
x = MaxPooling1D(3)(res2)
x = Dropout(0.5)(x)
# softmax classifier
x = Flatten()(x)
x_output = Dense(1000, activation='softmax', kernel_regularizer=l2(0.0001))(x)
model2 = Model(inputs=x_input, outputs=x_output)
model2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
weights = cached_download(hf_hub_url("jonathang/Protein_Family_CNN", 'model2.h5'))
model2.load_weights(weights)
return model2
def greet(name):
get_model()
return f"Input is {name}. Processed input is {Sequence.prepare(name)}"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()