File size: 2,364 Bytes
3e2f324 b110be1 b080a94 19599cb 3e2f324 596977e c55bf8f 3e2f324 ec24a25 1fe1ea5 bcbe59e 1fe1ea5 b080a94 b110be1 7bb8a21 3e2f324 8dfb7a8 d6615c6 eec6963 d6615c6 2341d95 1fe1ea5 2341d95 1fe1ea5 aef4fb0 3e2f324 2341d95 3e2f324 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
from langchain.llms import HuggingFacePipeline
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM
from components import caption_chain, tag_chain
from components import pexels, utils
import os, gc
import gradio as gr
# model = AutoModelForSeq2SeqLM.from_pretrained("declare-lab/flan-alpaca-gpt4-xl")
# tokenizer = AutoTokenizer.from_pretrained("declare-lab/flan-alpaca-gpt4-xl")
model = AutoModelForSeq2SeqLM.from_pretrained("declare-lab/flan-alpaca-large")
tokenizer = AutoTokenizer.from_pretrained("declare-lab/flan-alpaca-large")
pipe = pipeline(
'text2text-generation',
model=model,
tokenizer= tokenizer,
max_length=120
)
local_llm = HuggingFacePipeline(pipeline=pipe)
llm_chain = caption_chain.chain(llm=local_llm)
sum_llm_chain = tag_chain.chain(llm=local_llm)
pexels_api_key = os.getenv('pexels_api_key')
def pred(product_name, orientation):
if orientation == "Shorts/Reels/TikTok (1080 x 1920)":
orientation = "potrait"
height = 1920
width = 1080
elif orientation == "Youtube Videos (1920 x 1080)":
orientation = "landscape"
height = 1080
width = 1920
else :
orientation = "square"
height = 1080
width = 1080
folder_name, sentences = pexels.generate_videos(product_name, pexels_api_key, orientation, height, width, llm_chain, sum_llm_chain)
gc.collect()
utils.combine_videos(folder_name)
return ["\n".join(sentences), os.path.join(folder_name, "Final_Ad_Video.mp4")]
#{'video':os.path.join(folder_name, "Final_Ad_Video.mp4"),
# 'captions':"\n".join(sentences)}
with gr.Blocks() as demo:
gr.Markdown(
"""
# Ads Generator
Create video ads based on your product name using AI
### Note : the video generation takes about 2-4 minutes
"""
)
dimension = gr.Dropdown(
["Shorts/Reels/TikTok (1080 x 1920)", "Facebook/Youtube Videos (1920 x 1080)", "Square (1080 x 1080)"],
label="Video Dimension", info="Choose dimension"
)
product_name = gr.Textbox(label="product name")
captions = gr.Textbox(label="captions")
video = gr.Video()
btn = gr.Button("Submit")
btn.click(pred, inputs=[product_name, dimension], outputs=[captions,video])
demo.launch() |