|
from langchain.llms import HuggingFacePipeline |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM |
|
|
|
from components import caption_chain, tag_chain |
|
from components import pexels, utils |
|
import os, gc |
|
import gradio as gr |
|
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("declare-lab/flan-alpaca-gpt4-xl") |
|
tokenizer = AutoTokenizer.from_pretrained("declare-lab/flan-alpaca-gpt4-xl") |
|
|
|
pipe = pipeline( |
|
'text2text-generation', |
|
model=model, |
|
tokenizer= tokenizer, |
|
max_length=120 |
|
) |
|
|
|
local_llm = HuggingFacePipeline(pipeline=pipe) |
|
|
|
llm_chain = caption_chain.chain(llm=local_llm) |
|
sum_llm_chain = tag_chain.chain(llm=local_llm) |
|
|
|
pexels_api_key = os.getenv('pexels_api_key') |
|
|
|
def pred(product_name, orientation): |
|
if orientation == "Shorts/Reels/TikTok (1080 x 1920)": |
|
orientation = "potrait" |
|
height = 1920 |
|
width = 1080 |
|
elif orientation == "Youtube Videos (1920 x 1080)": |
|
orientation = "landscape" |
|
height = 1080 |
|
width = 1920 |
|
else : |
|
orientation = "square" |
|
height = 1080 |
|
width = 1080 |
|
folder_name, sentences = pexels.generate_videos(product_name, pexels_api_key, orientation, height, width, llm_chain, sum_llm_chain) |
|
gc.collect() |
|
utils.combine_videos(folder_name) |
|
return ["\n".join(sentences), os.path.join(folder_name, "Final_Ad_Video.mp4")] |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# Ads Generator |
|
Create video ads based on your product name using AI |
|
### Note : the video generation takes about 2-4 minutes |
|
""" |
|
) |
|
dimension = gr.Dropdown( |
|
["Shorts/Reels/TikTok (1080 x 1920)", "Facebook/Youtube Videos (1920 x 1080)", "Square (1080 x 1080)"], |
|
label="Video Dimension", info="Choose dimension" |
|
) |
|
product_name = gr.Textbox(label="product name") |
|
captions = gr.Textbox(label="captions") |
|
video = gr.Video() |
|
btn = gr.Button("Submit") |
|
btn.click(pred, inputs=[product_name, dimension], outputs=[captions,video]) |
|
|
|
|
|
|
|
demo.launch() |