|
|
|
import gradio as gr |
|
import os |
|
import torch |
|
|
|
from model import create_effnetb2_model |
|
from timeit import default_timer as timer |
|
from typing import Tuple, Dict |
|
|
|
|
|
class_names = ['airplane', 'automobile','bird','cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] |
|
|
|
|
|
|
|
|
|
effnetb2, effnetb2_transforms = create_effnetb2_model( |
|
num_classes=10, |
|
) |
|
|
|
|
|
effnetb2.load_state_dict( |
|
torch.load( |
|
f="cifar10_feature_extractor.pth", |
|
map_location=torch.device("cpu"), |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
def predict(img) -> Tuple[Dict, float]: |
|
"""Transforms and performs a prediction on img and returns prediction and time taken. |
|
""" |
|
|
|
start_time = timer() |
|
|
|
|
|
img = effnetb2_transforms(img).unsqueeze(0) |
|
|
|
|
|
effnetb2.eval() |
|
with torch.inference_mode(): |
|
|
|
pred_probs = torch.softmax(effnetb2(img), dim=1) |
|
|
|
|
|
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} |
|
|
|
|
|
pred_time = round(timer() - start_time, 5) |
|
|
|
|
|
return pred_labels_and_probs, pred_time |
|
|
|
|
|
|
|
|
|
title = "CIFAR10" |
|
description = "A CIFAR10 feature extractor computer vision model to classify images." |
|
|
|
|
|
example_list = [["examples/" + example] for example in os.listdir("examples")] |
|
|
|
|
|
demo = gr.Interface(fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Label(num_top_classes=4, label="Predictions"), |
|
gr.Number(label="Prediction time (s)")], |
|
|
|
examples=example_list, |
|
title=title, |
|
description=description, |
|
) |
|
|
|
|
|
demo.launch() |
|
|