File size: 6,585 Bytes
8d3c645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from predict import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down

fast_debug = False

def readPdf(pdfPath):
    """
    读取pdf文件,返回文本内容
    """
    import pdfminer
    from pdfminer.pdfparser import PDFParser
    from pdfminer.pdfdocument import PDFDocument
    from pdfminer.pdfpage import PDFPage, PDFTextExtractionNotAllowed
    from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
    from pdfminer.pdfdevice import PDFDevice
    from pdfminer.layout import LAParams
    from pdfminer.converter import PDFPageAggregator

    fp = open(pdfPath, 'rb')

    # Create a PDF parser object associated with the file object
    parser = PDFParser(fp)

    # Create a PDF document object that stores the document structure.
    # Password for initialization as 2nd parameter
    document = PDFDocument(parser)
    # Check if the document allows text extraction. If not, abort.
    if not document.is_extractable:
        raise PDFTextExtractionNotAllowed

    # Create a PDF resource manager object that stores shared resources.
    rsrcmgr = PDFResourceManager()

    # Create a PDF device object.
    # device = PDFDevice(rsrcmgr)

    # BEGIN LAYOUT ANALYSIS.
    # Set parameters for analysis.
    laparams = LAParams(
        char_margin=10.0,
        line_margin=0.2,
        boxes_flow=0.2,
        all_texts=False,
    )
    # Create a PDF page aggregator object.
    device = PDFPageAggregator(rsrcmgr, laparams=laparams)
    # Create a PDF interpreter object.
    interpreter = PDFPageInterpreter(rsrcmgr, device)

    # loop over all pages in the document
    outTextList = []
    for page in PDFPage.create_pages(document):
        # read the page into a layout object
        interpreter.process_page(page)
        layout = device.get_result()
        for obj in layout._objs:
            if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
                # print(obj.get_text())
                outTextList.append(obj.get_text())

    return outTextList


def 解析Paper(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt):
    import time, glob, os
    from bs4 import BeautifulSoup
    print('begin analysis on:', file_manifest)
    for index, fp in enumerate(file_manifest):
        if ".tex" in fp:
            with open(fp, 'r', encoding='utf-8') as f:
                file_content = f.read()
        if ".pdf" in fp.lower():
            file_content = readPdf(fp)
            file_content = BeautifulSoup(''.join(file_content), features="lxml").body.text.encode('gbk', 'ignore').decode('gbk')

        prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
        i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
        i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
        chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
        print('[1] yield chatbot, history')
        yield chatbot, history, '正常'

        if not fast_debug:
            msg = '正常'
            # ** gpt request **
            gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[])   # 带超时倒计时

            print('[2] end gpt req')
            chatbot[-1] = (i_say_show_user, gpt_say)
            history.append(i_say_show_user); history.append(gpt_say)
            print('[3] yield chatbot, history')
            yield chatbot, history, msg
            print('[4] next')
            if not fast_debug: time.sleep(2)

    all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
    i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
    chatbot.append((i_say, "[Local Message] waiting gpt response."))
    yield chatbot, history, '正常'

    if not fast_debug:
        msg = '正常'
        # ** gpt request **
        gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, api_key, temperature, history=history)   # 带超时倒计时

        chatbot[-1] = (i_say, gpt_say)
        history.append(i_say); history.append(gpt_say)
        yield chatbot, history, msg
        res = write_results_to_file(history)
        chatbot.append(("完成了吗?", res))
        yield chatbot, history, msg



@CatchException
def 批量总结PDF文档pdfminer(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
    history = []    # 清空历史,以免输入溢出
    import glob, os

    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "批量总结PDF文档,此版本使用pdfminer插件,带token约简功能。函数插件贡献者: Euclid-Jie。"])
    yield chatbot, history, '正常'

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import pdfminer, bs4
    except:
        report_execption(chatbot, history, 
            a = f"解析项目: {txt}", 
            b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
        yield chatbot, history, '正常'
        return
    if os.path.exists(txt):
        project_folder = txt
    else:
        if txt == "": txt = '空空如也的输入栏'
        report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
        yield chatbot, history, '正常'
        return
    file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
                    [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
                    # [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
                    # [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
    if len(file_manifest) == 0:
        report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
        yield chatbot, history, '正常'
        return
    yield from 解析Paper(file_manifest, project_folder, top_p, api_key, temperature, chatbot, history, systemPromptTxt)