Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from peft import PeftModel, PeftConfig
|
3 |
+
import transformers
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BloomForCausalLM, GenerationConfig
|
7 |
+
from transformers.models.opt.modeling_opt import OPTDecoderLayer
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom')
|
10 |
+
|
11 |
+
BASE_MODEL = "bigscience/bloom-3b"
|
12 |
+
|
13 |
+
#LORA_WEIGHTS = f"/content/drive/MyDrive/Colab Notebooks/LegalChatbot-{model_name}"
|
14 |
+
LORA_WEIGHTS = f"jslin09/LegalChatbot-bloom-3b"
|
15 |
+
|
16 |
+
config = PeftConfig.from_pretrained(LORA_WEIGHTS)
|
17 |
+
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
device = "cuda"
|
20 |
+
else:
|
21 |
+
device = "cpu"
|
22 |
+
|
23 |
+
try:
|
24 |
+
if torch.backends.mps.is_available():
|
25 |
+
device = "mps"
|
26 |
+
except:
|
27 |
+
pass
|
28 |
+
|
29 |
+
if device == "cuda":
|
30 |
+
model = BloomForCausalLM.from_pretrained(
|
31 |
+
BASE_MODEL,
|
32 |
+
load_in_8bit=True,
|
33 |
+
torch_dtype=torch.float16,
|
34 |
+
device_map="auto",
|
35 |
+
)
|
36 |
+
model = PeftModel.from_pretrained(model, LORA_WEIGHTS, torch_dtype=torch.float16)
|
37 |
+
elif device == "mps":
|
38 |
+
model = BloomForCausalLM.from_pretrained(
|
39 |
+
BASE_MODEL,
|
40 |
+
device_map={"": device},
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
)
|
43 |
+
model = PeftModel.from_pretrained(
|
44 |
+
model,
|
45 |
+
LORA_WEIGHTS,
|
46 |
+
device_map={"": device},
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
model = BloomForCausalLM.from_pretrained(
|
51 |
+
BASE_MODEL, device_map={"": device},
|
52 |
+
low_cpu_mem_usage=True
|
53 |
+
)
|
54 |
+
model = PeftModel.from_pretrained(
|
55 |
+
model,
|
56 |
+
LORA_WEIGHTS,
|
57 |
+
device_map={"": device},
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
def generate_prompt(instruction, input=None):
|
62 |
+
if input:
|
63 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
64 |
+
|
65 |
+
### Instruction:
|
66 |
+
{instruction}
|
67 |
+
|
68 |
+
### Input:
|
69 |
+
{input}
|
70 |
+
|
71 |
+
### Response:"""
|
72 |
+
else:
|
73 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
74 |
+
|
75 |
+
### Instruction:
|
76 |
+
{instruction}
|
77 |
+
|
78 |
+
### Response:"""
|
79 |
+
|
80 |
+
def generate_prompt_tw(instruction, input=None):
|
81 |
+
if input:
|
82 |
+
return f"""以下是描述任務的指令,並與提供進一步上下文的輸入配對。編寫適當完成請求的回應。
|
83 |
+
|
84 |
+
### 指令:
|
85 |
+
{instruction}
|
86 |
+
|
87 |
+
### 輸入:
|
88 |
+
{input}
|
89 |
+
|
90 |
+
### 回應:"""
|
91 |
+
else:
|
92 |
+
return f"""以下是描述任務的指令。編寫適當完成請求的回應。
|
93 |
+
|
94 |
+
### 指令:
|
95 |
+
{instruction}
|
96 |
+
|
97 |
+
### 回應:"""
|
98 |
+
|
99 |
+
|
100 |
+
model.eval()
|
101 |
+
if torch.__version__ >= "2":
|
102 |
+
model = torch.compile(model)
|
103 |
+
|
104 |
+
|
105 |
+
def evaluate(
|
106 |
+
instruction,
|
107 |
+
input=None,
|
108 |
+
temperature=0.1,
|
109 |
+
top_p=0.75,
|
110 |
+
top_k=40,
|
111 |
+
num_beams=4,
|
112 |
+
max_new_tokens=128,
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
prompt = generate_prompt_tw(instruction, input) # 中文版的話,函數名稱要改用 generate_prompt_tw
|
116 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
117 |
+
input_ids = inputs["input_ids"].to(device)
|
118 |
+
generation_config = GenerationConfig(
|
119 |
+
temperature=temperature,
|
120 |
+
top_p=top_p,
|
121 |
+
top_k=top_k,
|
122 |
+
num_beams=num_beams,
|
123 |
+
**kwargs,
|
124 |
+
)
|
125 |
+
with torch.no_grad():
|
126 |
+
generation_output = model.generate(
|
127 |
+
input_ids=input_ids,
|
128 |
+
generation_config=generation_config,
|
129 |
+
return_dict_in_generate=True,
|
130 |
+
output_scores=True,
|
131 |
+
max_new_tokens=max_new_tokens,
|
132 |
+
)
|
133 |
+
s = generation_output.sequences[0]
|
134 |
+
output = tokenizer.decode(s)
|
135 |
+
# return output.split("### Response:")[1].strip() # 中文版的話,要改為 return output.split("### 回應:")[1].strip()
|
136 |
+
return output.split("### 回應:")[1].strip()
|
137 |
+
|
138 |
+
|
139 |
+
gr.Interface(
|
140 |
+
fn=evaluate,
|
141 |
+
inputs=[
|
142 |
+
gr.components.Textbox(
|
143 |
+
lines=2, label="Instruction", placeholder="Tell me about alpacas."
|
144 |
+
),
|
145 |
+
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
146 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
147 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
148 |
+
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
149 |
+
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
|
150 |
+
gr.components.Slider(
|
151 |
+
minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
|
152 |
+
),
|
153 |
+
],
|
154 |
+
outputs=[
|
155 |
+
gr.components.Textbox(
|
156 |
+
lines=5,
|
157 |
+
label="Output",
|
158 |
+
)
|
159 |
+
],
|
160 |
+
title="🌲 🌲 🌲 BLOOM-LoRA-LegalChatbot",
|
161 |
+
description="BLOOM-LoRA-LegalChatbot is a 3B-parameter BLOOM model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and my Legal QA dataset, and makes use of the Huggingface BLOOM implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).",
|
162 |
+
).launch()
|