jsu27's picture
auth
523ab02
raw
history blame
9.71 kB
import os
import numpy as np
import torch as th
from imageio import imread
from skimage.transform import resize as imresize
from PIL import Image
from decomp_diffusion.model_and_diffusion_util import *
from decomp_diffusion.diffusion.respace import SpacedDiffusion
from decomp_diffusion.gen_image import *
from download import download_model
from upsampling import get_pipeline, upscale_image
import gradio as gr
from huggingface_hub import HfApi
HF_TOKEN = os.getenv('HF_TOKEN')
hf_api = HfApi(token=HF_TOKEN)
# fix randomness
th.manual_seed(0)
np.random.seed(0)
def get_pil_im(im, resolution=64):
im = imresize(im, (resolution, resolution))[:, :, :3]
im = th.Tensor(im).permute(2, 0, 1)[None, :, :, :].contiguous()
return im
# generate image components and reconstruction
def gen_image_and_components(model, gd, im, num_components=4, sample_method='ddim', batch_size=1, image_size=64, device='cuda', num_images=1):
"""Generate row of orig image, individual components, and reconstructed image"""
orig_img = get_pil_im(im, resolution=image_size).to(device)
latent = model.encode_latent(orig_img)
model_kwargs = {'latent': latent}
assert sample_method in ('ddpm', 'ddim')
sample_loop_func = gd.p_sample_loop if sample_method == 'ddpm' else gd.ddim_sample_loop
if sample_method == 'ddim':
model = gd._wrap_model(model)
# generate imgs
for i in range(num_images):
all_samples = [orig_img]
# individual components
for j in range(num_components):
model_kwargs['latent_index'] = j
sample = sample_loop_func(
model,
(batch_size, 3, image_size, image_size),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
# save indiv comp
all_samples.append(sample)
# reconstruction
model_kwargs['latent_index'] = None
sample = sample_loop_func(
model,
(batch_size, 3, image_size, image_size),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
# save indiv reconstruction
all_samples.append(sample)
samples = th.cat(all_samples, dim=0).cpu()
grid = make_grid(samples, nrow=samples.shape[0], padding=0)
return grid
# def decompose_image(im):
# sample_method = 'ddim'
# result = gen_image_and_components(clevr_model, GD[sample_method], im, sample_method=sample_method, num_images=1, device=device)
# return result.permute(1, 2, 0).numpy()
# load diffusion
GD = {} # diffusion objects for ddim and ddpm
diffusion_kwargs = diffusion_defaults()
gd = create_gaussian_diffusion(**diffusion_kwargs)
GD['ddpm'] = gd
# set up ddim sampling
desired_timesteps = 50
num_timesteps = diffusion_kwargs['steps']
spacing = num_timesteps // desired_timesteps
spaced_ts = list(range(0, num_timesteps + 1, spacing))
betas = get_named_beta_schedule(diffusion_kwargs['noise_schedule'], num_timesteps)
diffusion_kwargs['betas'] = betas
del diffusion_kwargs['steps'], diffusion_kwargs['noise_schedule']
gd = SpacedDiffusion(spaced_ts, rescale_timesteps=True, original_num_steps=num_timesteps, **diffusion_kwargs)
GD['ddim'] = gd
def combine_components_slice(model, gd, im1, im2, indices=None, sample_method='ddim', device='cuda', num_images=4, model_kwargs={}, desc='', save_dir='', dataset='clevr', image_size=64):
"""Combine by adding components together
"""
assert sample_method in ('ddpm', 'ddim')
im1 = get_pil_im(im1, resolution=image_size).to(device)
im2 = get_pil_im(im2, resolution=image_size).to(device)
latent1 = model.encode_latent(im1)
latent2 = model.encode_latent(im2)
num_comps = model.num_components
# get latent slices
if indices == None:
half = num_comps // 2
indices = [1] * half + [0] * half # first half 1, second half 0
indices = th.Tensor(indices) == 1
indices = indices.reshape(num_comps, 1)
elif type(indices) == str:
indices = indices.split(',')
indices = [int(ind) for ind in indices]
indices = th.Tensor(indices).reshape(-1, 1) == 1
assert len(indices) == num_comps
indices = indices.to(device)
latent1 = latent1.reshape(num_comps, -1).to(device)
latent2 = latent2.reshape(num_comps, -1).to(device)
combined_latent = th.where(indices, latent1, latent2)
combined_latent = combined_latent.reshape(1, -1)
model_kwargs['latent'] = combined_latent
sample_loop_func = gd.p_sample_loop if sample_method == 'ddpm' else gd.ddim_sample_loop
if sample_method == 'ddim':
model = gd._wrap_model(model)
# sampling loop
sample = sample_loop_func(
model,
(1, 3, image_size, image_size),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:1]
return sample[0].cpu()
def decompose_image_demo(im, model):
sample_method = 'ddim'
result = gen_image_and_components(MODELS[model], GD[sample_method], im, sample_method=sample_method, num_images=1, device=device)
# result = Image.fromarray(result.permute(1, 2, 0).numpy())
return result.permute(1, 2, 0).numpy()
def combine_images_demo(im1, im2, model):
sample_method = 'ddim'
result = combine_components_slice(MODELS[model], GD[sample_method], im1, im2, indices='1,0,1,0', sample_method=sample_method, num_images=1, device=device)
result = Image.fromarray(result.permute(1, 2, 0).numpy())
if model == 'CelebA-HQ':
return upscale_image(result, pipe)
return result
def load_model(dataset, extra_kwargs={}, device='cuda'):
ckpt_path = download_model(dataset)
model_kwargs = unet_model_defaults()
# model parameters
model_kwargs.update(extra_kwargs)
model = create_diffusion_model(**model_kwargs)
model.eval()
model.to(device)
print(f'loading from {ckpt_path}')
checkpoint = th.load(ckpt_path, map_location='cpu')
model.load_state_dict(checkpoint)
return model
device = 'cuda' if th.cuda.is_available() else 'cpu'
clevr_model = load_model('clevr', extra_kwargs=dict(emb_dim=64, enc_channels=128), device=device)
celeb_model = load_model('celebahq', extra_kwargs=dict(enc_channels=128), device=device)
MODELS = {
'CLEVR': clevr_model,
'CelebA-HQ': celeb_model
}
pipe = get_pipeline()
with gr.Blocks() as demo:
gr.Markdown(
"""<h1 style="text-align: center;"><b>Unsupervised Compositional Image Decomposition with Diffusion Models
</b> - <a href="https://jsu27.github.io/decomp-diffusion-web/">Project Page</a></h1>""")
gr.Markdown(
"""<p style="font-size: 18px;">We introduce Decomp Diffusion, an unsupervised approach that discovers compositional concepts from images, represented by diffusion models.
</p>""")
gr.Markdown(
"""<br> <h4>Decomposition and reconstruction of images</h4>""")
with gr.Row():
with gr.Column():
with gr.Row():
decomp_input = gr.Image(type='numpy', label='Input')
with gr.Row():
decomp_model = gr.Radio(
['CLEVR', 'CelebA-HQ'], type="value", label='Model',
value='CLEVR')
with gr.Row():
# image_examples = [os.path.join(os.path.dirname(__file__), 'sample_images/clevr_im_10.png'), 'CLEVR']
decomp_examples = [['sample_images/clevr_im_10.png', 'CLEVR'],
['sample_images/celebahq_im_15.jpg', 'CelebA-HQ']]
decomp_img_examples = gr.Examples(
examples=decomp_examples,
inputs=[decomp_input, decomp_model]
)
with gr.Column():
decomp_output = gr.Image(type='numpy')
decomp_button = gr.Button("Generate")
gr.Markdown(
"""<br> <h4>Combination of images</h4>""")
with gr.Row().style(equal_height=True):
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
comb_input1 = gr.Image(type='numpy', label='Input 1')
with gr.Column():
comb_input2 = gr.Image(type='numpy', label='Input 2')
with gr.Row():
comb_model = gr.Radio(
['CLEVR', 'CelebA-HQ'], type="value", label='Model',
value='CLEVR')
with gr.Row():
comb_examples = [['sample_images/clevr_im_10.png', 'sample_images/clevr_im_25.png', 'CLEVR'],
['sample_images/celebahq_im_15.jpg', 'sample_images/celebahq_im_21.jpg', 'CelebA-HQ']]
comb_img_examples = gr.Examples(
examples=comb_examples,
inputs=[comb_input1, comb_input2, comb_model]
)
with gr.Column(scale=1):
comb_output = gr.Image(type='pil')
comb_button = gr.Button("Generate")
decomp_button.click(decompose_image_demo,
inputs=[decomp_input, decomp_model],
outputs=decomp_output)
comb_button.click(combine_images_demo,
inputs=[comb_input1, comb_input2, comb_model],
outputs=comb_output)
demo.launch(debug=True)