Spaces:
Build error
Build error
File size: 9,227 Bytes
d8fad2b 7c7327d d8fad2b 7c7327d a322e01 7c7327d d8fad2b a322e01 d8fad2b a322e01 d8fad2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from typing import List, Tuple
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import note_seq
from matplotlib.figure import Figure
from numpy import ndarray
import torch
from constants import GM_INSTRUMENTS, SAMPLE_RATE
from string_to_notes import token_sequence_to_note_sequence
from model import get_model_and_tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained("juancopi81/lmd_8bars_tokenizer")
model = AutoModelForCausalLM.from_pretrained("juancopi81/lmd-8bars-2048-epochs20_v3")
# Move model to device
model = model.to(device)
def create_seed_string(genre: str = "OTHER") -> str:
"""
Creates a seed string for generating a new piece.
Args:
genre (str, optional): The genre of the piece. Defaults to "OTHER".
Returns:
str: The seed string.
"""
seed_string = f"PIECE_START GENRE={genre} TRACK_START"
return seed_string
def get_instruments(text_sequence: str) -> List[str]:
"""
Extracts the list of instruments from a text sequence.
Args:
text_sequence (str): The text sequence.
Returns:
List[str]: The list of instruments.
"""
instruments = []
parts = text_sequence.split()
for part in parts:
if part.startswith("INST="):
if part[5:] == "DRUMS":
instruments.append("Drums")
else:
index = int(part[5:])
instruments.append(GM_INSTRUMENTS[index])
return instruments
def generate_new_instrument(seed: str, temp: float = 0.75) -> str:
"""
Generates a new instrument sequence from a given seed and temperature.
Args:
seed (str): The seed string for the generation.
temp (float, optional): The temperature for the generation, which controls the randomness. Defaults to 0.75.
Returns:
str: The generated instrument sequence.
"""
seed_length = len(tokenizer.encode(seed))
while True:
# Encode the conditioning tokens.
input_ids = tokenizer.encode(seed, return_tensors="pt")
# Move the input_ids tensor to the same device as the model
input_ids = input_ids.to(model.device)
# Generate more tokens.
eos_token_id = tokenizer.encode("TRACK_END")[0]
generated_ids = model.generate(
input_ids,
max_new_tokens=2048,
do_sample=True,
temperature=temp,
eos_token_id=eos_token_id,
)
generated_sequence = tokenizer.decode(generated_ids[0])
# Check if the generated sequence contains "NOTE_ON" beyond the seed
new_generated_sequence = tokenizer.decode(generated_ids[0][seed_length:])
if "NOTE_ON" in new_generated_sequence:
return generated_sequence
def get_outputs_from_string(
generated_sequence: str, qpm: int = 120
) -> Tuple[ndarray, str, Figure, str, str]:
"""
Converts a generated sequence into various output formats including audio, MIDI, plot, etc.
Args:
generated_sequence (str): The generated sequence of tokens.
qpm (int, optional): The quarter notes per minute. Defaults to 120.
Returns:
Tuple[ndarray, str, Figure, str, str]: The audio waveform, MIDI file name, plot figure,
instruments string, and number of tokens string.
"""
instruments = get_instruments(generated_sequence)
instruments_str = "\n".join(f"- {instrument}" for instrument in instruments)
note_sequence = token_sequence_to_note_sequence(generated_sequence, qpm=qpm)
synth = note_seq.fluidsynth
array_of_floats = synth(note_sequence, sample_rate=SAMPLE_RATE)
int16_data = note_seq.audio_io.float_samples_to_int16(array_of_floats)
fig = note_seq.plot_sequence(note_sequence, show_figure=False)
num_tokens = str(len(generated_sequence.split()))
audio = gr.make_waveform((SAMPLE_RATE, int16_data))
note_seq.note_sequence_to_midi_file(note_sequence, "midi_ouput.mid")
return audio, "midi_ouput.mid", fig, instruments_str, num_tokens
def remove_last_instrument(
text_sequence: str, qpm: int = 120
) -> Tuple[ndarray, str, Figure, str, str, str]:
"""
Removes the last instrument from a song string and returns the various output formats.
Args:
text_sequence (str): The song string.
qpm (int, optional): The quarter notes per minute. Defaults to 120.
Returns:
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
instruments string, new song string, and number of tokens string.
"""
# We split the song into tracks by splitting on 'TRACK_START'
tracks = text_sequence.split("TRACK_START")
# We keep all tracks except the last one
modified_tracks = tracks[:-1]
# We join the tracks back together, adding back the 'TRACK_START' that was removed by split
new_song = "TRACK_START".join(modified_tracks)
if len(tracks) == 2:
# There is only one instrument, so start from scratch
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence=new_song
)
elif len(tracks) == 1:
# No instrument so start from empty sequence
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence=""
)
else:
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
new_song, qpm
)
return audio, midi_file, fig, instruments_str, new_song, num_tokens
def regenerate_last_instrument(
text_sequence: str, qpm: int = 120
) -> Tuple[ndarray, str, Figure, str, str, str]:
"""
Regenerates the last instrument in a song string and returns the various output formats.
Args:
text_sequence (str): The song string.
qpm (int, optional): The quarter notes per minute. Defaults to 120.
Returns:
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
instruments string, new song string, and number of tokens string.
"""
last_inst_index = text_sequence.rfind("INST=")
if last_inst_index == -1:
# No instrument so start from empty sequence
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence="", qpm=qpm
)
else:
# Take it from the last instrument and continue generation
next_space_index = text_sequence.find(" ", last_inst_index)
new_seed = text_sequence[:next_space_index]
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence=new_seed, qpm=qpm
)
return audio, midi_file, fig, instruments_str, new_song, num_tokens
def change_tempo(
text_sequence: str, qpm: int
) -> Tuple[ndarray, str, Figure, str, str, str]:
"""
Changes the tempo of a song string and returns the various output formats.
Args:
text_sequence (str): The song string.
qpm (int): The new quarter notes per minute.
Returns:
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
instruments string, text sequence, and number of tokens string.
"""
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
text_sequence, qpm=qpm
)
return audio, midi_file, fig, instruments_str, text_sequence, num_tokens
def generate_song(
genre: str = "OTHER",
temp: float = 0.75,
text_sequence: str = "",
qpm: int = 120,
) -> Tuple[ndarray, str, Figure, str, str, str]:
"""
Generates a song given a genre, temperature, initial text sequence, and tempo.
Args:
model (AutoModelForCausalLM): The pretrained model used for generating the sequences.
tokenizer (AutoTokenizer): The tokenizer used to encode and decode the sequences.
genre (str, optional): The genre of the song. Defaults to "OTHER".
temp (float, optional): The temperature for the generation, which controls the randomness. Defaults to 0.75.
text_sequence (str, optional): The initial text sequence for the song. Defaults to "".
qpm (int, optional): The quarter notes per minute. Defaults to 120.
Returns:
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
instruments string, generated song string, and number of tokens string.
"""
if text_sequence == "":
seed_string = create_seed_string(genre)
else:
seed_string = text_sequence
generated_sequence = generate_new_instrument(seed=seed_string, temp=temp)
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
generated_sequence, qpm
)
return audio, midi_file, fig, instruments_str, generated_sequence, num_tokens
|