juancopi81's picture
Update transforming/whispertransform.py
a09bf24
import os
from pathlib import Path
from typing import Any
from collections import OrderedDict
from pytube import YouTube
import whisper
from transforming.transform import Transform
from video import YoutubeVideo
from utils import accepts_types
class WhisperTransform(Transform):
"""
Transform a Video object using Whisper model. It's a
concrete Transform.
Args:
model (`str`):
Size of Whisper model. Can be tiny, base (default), small, medium, and large.
without_timestamps (`bool`, defaults to `False`):
To add phrase-level timestamps.
"""
def __init__(self, model: str="base", without_timestamps: bool=False) -> None:
self.model = whisper.load_model(model)
self.without_timestamps = without_timestamps
@accepts_types(YoutubeVideo)
def apply(self, video: YoutubeVideo) -> YoutubeVideo:
"""Creates a new video with transcriptions created by Whisper.
"""
# Create a YouTube object
yt = YouTube(video.url)
print(f"Video title and url: {video.title} {video.url}")
audio_file = self._get_audio_from_video(yt)
result = self.model.transcribe(audio_file,
without_timestamps=self.without_timestamps)
transcription = result["text"]
data = []
for seg in result['segments']:
data.append(OrderedDict({'start': seg['start'], 'end': seg['end'],'text': seg['text']}))
os.remove(audio_file)
return YoutubeVideo(channel_name = video.channel_name,
url = video.url,
title = video.title,
description = video.description,
transcription = transcription,
segments = data)
def _get_audio_from_video(self, yt: Any) -> Path:
# TODO: Add credits
try:
video = yt.streams.filter(only_audio=True).first()
except Exception as e:
print(f"StreamingData exception print: {e}")
pass
else:
out_file = video.download(output_path=".")
base, _ = os.path.splitext(out_file)
new_file = base + ".mp3"
os.rename(out_file, new_file)
return new_file