|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import math |
|
import os |
|
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1" |
|
import shutil |
|
import ffmpeg |
|
import zipfile |
|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from sam2.build_sam import build_sam2 |
|
from sam2.sam2_image_predictor import SAM2ImagePredictor |
|
from sam2.build_sam import build_sam2_video_predictor |
|
import cv2 |
|
|
|
def clean(Seg_Tracker): |
|
if Seg_Tracker is not None: |
|
predictor, inference_state, image_predictor = Seg_Tracker |
|
predictor.reset_state(inference_state) |
|
del predictor |
|
del inference_state |
|
del image_predictor |
|
del Seg_Tracker |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
return None, ({}, {}), None, None, 0, None, None, None, 0 |
|
|
|
def get_meta_from_video(Seg_Tracker, input_video, scale_slider, checkpoint): |
|
|
|
output_dir = '/tmp/output_frames' |
|
output_masks_dir = '/tmp/output_masks' |
|
output_combined_dir = '/tmp/output_combined' |
|
clear_folder(output_dir) |
|
clear_folder(output_masks_dir) |
|
clear_folder(output_combined_dir) |
|
if input_video is None: |
|
return None, ({}, {}), None, None, 0, None, None, None, 0 |
|
cap = cv2.VideoCapture(input_video) |
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
cap.release() |
|
output_frames = int(total_frames * scale_slider) |
|
frame_interval = max(1, total_frames // output_frames) |
|
ffmpeg.input(input_video, hwaccel='cuda').output( |
|
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0, |
|
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr' |
|
).run() |
|
|
|
first_frame_path = os.path.join(output_dir, '0000000.jpg') |
|
first_frame = cv2.imread(first_frame_path) |
|
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB) |
|
|
|
if Seg_Tracker is not None: |
|
del Seg_Tracker |
|
Seg_Tracker = None |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() |
|
if torch.cuda.get_device_properties(0).major >= 8: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
if checkpoint == "tiny": |
|
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_tiny.pt" |
|
model_cfg = "sam2_hiera_t.yaml" |
|
elif checkpoint == "samll": |
|
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_small.pt" |
|
model_cfg = "sam2_hiera_s.yaml" |
|
elif checkpoint == "base-plus": |
|
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_base_plus.pt" |
|
model_cfg = "sam2_hiera_b+.yaml" |
|
elif checkpoint == "large": |
|
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_large.pt" |
|
model_cfg = "sam2_hiera_l.yaml" |
|
|
|
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda") |
|
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda") |
|
|
|
image_predictor = SAM2ImagePredictor(sam2_model) |
|
inference_state = predictor.init_state(video_path=output_dir) |
|
predictor.reset_state(inference_state) |
|
return (predictor, inference_state, image_predictor), ({}, {}), first_frame_rgb, first_frame_rgb, 0, None, None, None, 0 |
|
|
|
def mask2bbox(mask): |
|
if len(np.where(mask > 0)[0]) == 0: |
|
print(f'not mask') |
|
return np.array([0, 0, 0, 0]).astype(np.int64), False |
|
x_ = np.sum(mask, axis=0) |
|
y_ = np.sum(mask, axis=1) |
|
x0 = np.min(np.nonzero(x_)[0]) |
|
x1 = np.max(np.nonzero(x_)[0]) |
|
y0 = np.min(np.nonzero(y_)[0]) |
|
y1 = np.max(np.nonzero(y_)[0]) |
|
return np.array([x0, y0, x1, y1]).astype(np.int64), True |
|
|
|
def sam_stroke(Seg_Tracker, drawing_board, last_draw, frame_num, ann_obj_id): |
|
predictor, inference_state, image_predictor = Seg_Tracker |
|
image_path = f'/tmp/output_frames/{frame_num:07d}.jpg' |
|
image = cv2.imread(image_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
display_image = drawing_board["image"] |
|
image_predictor.set_image(image) |
|
input_mask = drawing_board["mask"] |
|
input_mask[input_mask != 0] = 255 |
|
if last_draw is not None: |
|
diff_mask = cv2.absdiff(input_mask, last_draw) |
|
input_mask = diff_mask |
|
bbox, hasMask = mask2bbox(input_mask[:, :, 0]) |
|
if not hasMask : |
|
return Seg_Tracker, display_image, display_image |
|
masks, scores, logits = image_predictor.predict( point_coords=None, point_labels=None, box=bbox[None, :], multimask_output=False,) |
|
mask = masks > 0.0 |
|
masked_frame = show_mask(mask, display_image, ann_obj_id) |
|
masked_with_rect = draw_rect(masked_frame, bbox, ann_obj_id) |
|
frame_idx, object_ids, masks = predictor.add_new_mask(inference_state, frame_idx=frame_num, obj_id=ann_obj_id, mask=mask[0]) |
|
last_draw = drawing_board["mask"] |
|
return Seg_Tracker, masked_with_rect, masked_with_rect, last_draw |
|
|
|
def draw_rect(image, bbox, obj_id): |
|
cmap = plt.get_cmap("tab10") |
|
color = np.array(cmap(obj_id)[:3]) |
|
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8))) |
|
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8))) |
|
x0, y0, x1, y1 = bbox |
|
image_with_rect = cv2.rectangle(image.copy(), (x0, y0), (x1, y1), inv_color, thickness=2) |
|
return image_with_rect |
|
|
|
def sam_click(Seg_Tracker, frame_num, point_mode, click_stack, ann_obj_id, evt: gr.SelectData): |
|
points_dict, labels_dict = click_stack |
|
predictor, inference_state, image_predictor = Seg_Tracker |
|
ann_frame_idx = frame_num |
|
print(f'ann_frame_idx: {ann_frame_idx}') |
|
point = np.array([[evt.index[0], evt.index[1]]], dtype=np.float32) |
|
if point_mode == "Positive": |
|
label = np.array([1], np.int32) |
|
else: |
|
label = np.array([0], np.int32) |
|
|
|
if ann_frame_idx not in points_dict: |
|
points_dict[ann_frame_idx] = {} |
|
if ann_frame_idx not in labels_dict: |
|
labels_dict[ann_frame_idx] = {} |
|
|
|
if ann_obj_id not in points_dict[ann_frame_idx]: |
|
points_dict[ann_frame_idx][ann_obj_id] = np.empty((0, 2), dtype=np.float32) |
|
if ann_obj_id not in labels_dict[ann_frame_idx]: |
|
labels_dict[ann_frame_idx][ann_obj_id] = np.empty((0,), dtype=np.int32) |
|
|
|
points_dict[ann_frame_idx][ann_obj_id] = np.append(points_dict[ann_frame_idx][ann_obj_id], point, axis=0) |
|
labels_dict[ann_frame_idx][ann_obj_id] = np.append(labels_dict[ann_frame_idx][ann_obj_id], label, axis=0) |
|
|
|
click_stack = (points_dict, labels_dict) |
|
|
|
frame_idx, out_obj_ids, out_mask_logits = predictor.add_new_points( |
|
inference_state=inference_state, |
|
frame_idx=ann_frame_idx, |
|
obj_id=ann_obj_id, |
|
points=points_dict[ann_frame_idx][ann_obj_id], |
|
labels=labels_dict[ann_frame_idx][ann_obj_id], |
|
) |
|
|
|
image_path = f'/tmp/output_frames/{ann_frame_idx:07d}.jpg' |
|
image = cv2.imread(image_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
masked_frame = image.copy() |
|
for i, obj_id in enumerate(out_obj_ids): |
|
mask = (out_mask_logits[i] > 0.0).cpu().numpy() |
|
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id) |
|
masked_frame_with_markers = draw_markers(masked_frame, points_dict[ann_frame_idx], labels_dict[ann_frame_idx]) |
|
|
|
return Seg_Tracker, masked_frame_with_markers, masked_frame_with_markers, click_stack |
|
|
|
def draw_markers(image, points_dict, labels_dict): |
|
cmap = plt.get_cmap("tab10") |
|
image_h, image_w = image.shape[:2] |
|
marker_size = max(1, int(min(image_h, image_w) * 0.05)) |
|
|
|
for obj_id in points_dict: |
|
color = np.array(cmap(obj_id)[:3]) |
|
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8))) |
|
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8))) |
|
for point, label in zip(points_dict[obj_id], labels_dict[obj_id]): |
|
x, y = int(point[0]), int(point[1]) |
|
if label == 1: |
|
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_CROSS, markerSize=marker_size, thickness=2) |
|
else: |
|
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_TILTED_CROSS, markerSize=int(marker_size / np.sqrt(2)), thickness=2) |
|
|
|
return image |
|
|
|
def show_mask(mask, image=None, obj_id=None): |
|
cmap = plt.get_cmap("tab10") |
|
cmap_idx = 0 if obj_id is None else obj_id |
|
color = np.array([*cmap(cmap_idx)[:3], 0.6]) |
|
|
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
mask_image = (mask_image * 255).astype(np.uint8) |
|
if image is not None: |
|
image_h, image_w = image.shape[:2] |
|
if (image_h, image_w) != (h, w): |
|
raise ValueError(f"Image dimensions ({image_h}, {image_w}) and mask dimensions ({h}, {w}) do not match") |
|
colored_mask = np.zeros_like(image, dtype=np.uint8) |
|
for c in range(3): |
|
colored_mask[..., c] = mask_image[..., c] |
|
alpha_mask = mask_image[..., 3] / 255.0 |
|
for c in range(3): |
|
image[..., c] = np.where(alpha_mask > 0, (1 - alpha_mask) * image[..., c] + alpha_mask * colored_mask[..., c], image[..., c]) |
|
return image |
|
return mask_image |
|
|
|
def show_res_by_slider(frame_per, click_stack): |
|
image_path = '/tmp/output_frames' |
|
output_combined_dir = '/tmp/output_combined' |
|
|
|
combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)]) |
|
if combined_frames: |
|
output_masked_frame_path = combined_frames |
|
else: |
|
original_frames = sorted([os.path.join(image_path, img_name) for img_name in os.listdir(image_path)]) |
|
output_masked_frame_path = original_frames |
|
|
|
total_frames_num = len(output_masked_frame_path) |
|
if total_frames_num == 0: |
|
print("No output results found") |
|
return None, None |
|
else: |
|
frame_num = math.floor(total_frames_num * frame_per / 100) |
|
if frame_per == 100: |
|
frame_num = frame_num - 1 |
|
chosen_frame_path = output_masked_frame_path[frame_num] |
|
print(f"{chosen_frame_path}") |
|
chosen_frame_show = cv2.imread(chosen_frame_path) |
|
chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB) |
|
points_dict, labels_dict = click_stack |
|
if frame_num in points_dict and frame_num in labels_dict: |
|
chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num]) |
|
return chosen_frame_show, chosen_frame_show, frame_num |
|
|
|
def clear_folder(folder_path): |
|
if os.path.exists(folder_path): |
|
shutil.rmtree(folder_path) |
|
os.makedirs(folder_path) |
|
|
|
def zip_folder(folder_path, output_zip_path): |
|
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_STORED) as zipf: |
|
for root, _, files in os.walk(folder_path): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
zipf.write(file_path, os.path.relpath(file_path, folder_path)) |
|
|
|
def tracking_objects(Seg_Tracker, frame_num, input_video): |
|
output_dir = '/tmp/output_frames' |
|
output_masks_dir = '/tmp/output_masks' |
|
output_combined_dir = '/tmp/output_combined' |
|
output_video_path = '/tmp/output_video.mp4' |
|
output_zip_path = '/tmp/output_masks.zip' |
|
clear_folder(output_masks_dir) |
|
clear_folder(output_combined_dir) |
|
if os.path.exists(output_video_path): |
|
os.remove(output_video_path) |
|
if os.path.exists(output_zip_path): |
|
os.remove(output_zip_path) |
|
video_segments = {} |
|
predictor, inference_state, image_predictor = Seg_Tracker |
|
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): |
|
video_segments[out_frame_idx] = { |
|
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() |
|
for i, out_obj_id in enumerate(out_obj_ids) |
|
} |
|
frame_files = sorted([f for f in os.listdir(output_dir) if f.endswith('.jpg')]) |
|
|
|
for frame_file in frame_files: |
|
frame_idx = int(os.path.splitext(frame_file)[0]) |
|
frame_path = os.path.join(output_dir, frame_file) |
|
image = cv2.imread(frame_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
masked_frame = image.copy() |
|
if frame_idx in video_segments: |
|
for obj_id, mask in video_segments[frame_idx].items(): |
|
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id) |
|
mask_output_path = os.path.join(output_masks_dir, f'{obj_id}_{frame_idx:07d}.png') |
|
cv2.imwrite(mask_output_path, show_mask(mask)) |
|
combined_output_path = os.path.join(output_combined_dir, f'{frame_idx:07d}.png') |
|
combined_image_bgr = cv2.cvtColor(masked_frame, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite(combined_output_path, combined_image_bgr) |
|
if frame_idx == frame_num: |
|
final_masked_frame = masked_frame |
|
|
|
cap = cv2.VideoCapture(input_video) |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
cap.release() |
|
|
|
output_frames = len([name for name in os.listdir(output_combined_dir) if os.path.isfile(os.path.join(output_combined_dir, name)) and name.endswith('.png')]) |
|
out_fps = fps * output_frames / total_frames |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v") |
|
out = cv2.VideoWriter(output_video_path, fourcc, out_fps, (frame_width, frame_height)) |
|
|
|
for i in range(output_frames): |
|
frame_path = os.path.join(output_combined_dir, f'{i:07d}.png') |
|
frame = cv2.imread(frame_path) |
|
out.write(frame) |
|
|
|
out.release() |
|
|
|
zip_folder(output_masks_dir, output_zip_path) |
|
print("done") |
|
return final_masked_frame, final_masked_frame, output_video_path, output_video_path, output_zip_path |
|
|
|
def increment_ann_obj_id(ann_obj_id): |
|
ann_obj_id += 1 |
|
return ann_obj_id |
|
|
|
def drawing_board_get_input_first_frame(input_first_frame): |
|
return input_first_frame |
|
|
|
def seg_track_app(): |
|
|
|
|
|
|
|
|
|
css = """ |
|
#input_output_video video { |
|
max-height: 550px; |
|
max-width: 100%; |
|
height: auto; |
|
} |
|
""" |
|
|
|
app = gr.Blocks(css=css) |
|
|
|
with app: |
|
gr.Markdown( |
|
''' |
|
<div style="text-align:center; margin-bottom:20px;"> |
|
<span style="font-size:3em; font-weight:bold;">SAM2 for Video Segmentation 🔥</span> |
|
</div> |
|
<div style="text-align:center; margin-bottom:10px;"> |
|
<span style="font-size:1.5em; font-weight:bold;">Segment Anything in Medical Images and Videos: Benchmark and Deployment</span> |
|
</div> |
|
<div style="text-align:center; margin-bottom:20px;"> |
|
<a href="https://github.com/bowang-lab/MedSAM/tree/MedSAM2"> |
|
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block; margin-right:10px;"> |
|
</a> |
|
<a href="https://arxiv.org/abs/2408.03322"> |
|
<img src="https://img.shields.io/badge/arXiv-2408.03322-green?style=plastic" alt="Paper" style="display:inline-block; margin-right:10px;"> |
|
</a> |
|
<a href="https://github.com/bowang-lab/MedSAMSlicer/tree/SAM2"> |
|
<img src="https://img.shields.io/badge/3D-Slicer-Plugin" alt="3D Slicer Plugin" style="display:inline-block; margin-right:10px;"> |
|
</a> |
|
<a href="https://drive.google.com/drive/folders/1EXzRkxZmrXbahCFA8_ImFRM6wQDEpOSe?usp=sharing"> |
|
<img src="https://img.shields.io/badge/Video-Tutorial-green?style=plastic" alt="Video Tutorial" style="display:inline-block; margin-right:10px;"> |
|
</a> |
|
</div> |
|
<div style="text-align:left; margin-bottom:20px;"> |
|
This API supports using box (generated by scribble) and point prompts for video segmentation with |
|
<a href="https://ai.meta.com/sam2/" target="_blank">SAM2</a>. |
|
</div> |
|
<div style="margin-bottom:20px;"> |
|
<ol style="list-style:none; padding-left:0;"> |
|
<li>1. Upload video file</li> |
|
<li>2. Select model size and downsample frame rate and run <b>Preprocess</b></li> |
|
<li>3. Use <b>Stroke to Box Prompt</b> to draw box on the first frame or <b>Point Prompt</b> to click on the first frame.</li> |
|
<li> Note: The bounding rectangle of the stroke should be able to cover the segmentation target.</li> |
|
<li>4. Click <b>Segment</b> to get the segmentation result</li> |
|
<li>5. Click <b>Add New Object</b> to add new object</li> |
|
<li>6. Click <b>Start Tracking</b> to track objects in the video</li> |
|
<li>7. Click <b>Reset</b> to reset the app</li> |
|
<li>8. Download the video with segmentation results</li> |
|
</ol> |
|
</div> |
|
''' |
|
) |
|
|
|
click_stack = gr.State(({}, {})) |
|
Seg_Tracker = gr.State(None) |
|
frame_num = gr.State(value=(int(0))) |
|
ann_obj_id = gr.State(value=(int(0))) |
|
last_draw = gr.State(None) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=0.5): |
|
with gr.Row(): |
|
tab_video_input = gr.Tab(label="Video input") |
|
with tab_video_input: |
|
input_video = gr.Video(label='Input video', elem_id="input_output_video") |
|
with gr.Row(): |
|
checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny") |
|
scale_slider = gr.Slider( |
|
label="Downsampe Frame Rate", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.25, |
|
value=1.0, |
|
interactive=True |
|
) |
|
preprocess_button = gr.Button( |
|
value="Preprocess", |
|
interactive=True, |
|
) |
|
|
|
with gr.Row(): |
|
tab_stroke = gr.Tab(label="Stroke to Box Prompt") |
|
with tab_stroke: |
|
drawing_board = gr.Image(label='Drawing Board', tool="sketch", brush_radius=10, interactive=True) |
|
with gr.Row(): |
|
seg_acc_stroke = gr.Button(value="Segment", interactive=True) |
|
|
|
tab_click = gr.Tab(label="Point Prompt") |
|
with tab_click: |
|
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True).style(height=550) |
|
with gr.Row(): |
|
point_mode = gr.Radio( |
|
choices=["Positive", "Negative"], |
|
value="Positive", |
|
label="Point Prompt", |
|
interactive=True) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
frame_per = gr.Slider( |
|
label = "Percentage of Frames Viewed", |
|
minimum= 0.0, |
|
maximum= 100.0, |
|
step=0.01, |
|
value=0.0, |
|
) |
|
new_object_button = gr.Button( |
|
value="Add New Object", |
|
interactive=True |
|
) |
|
track_for_video = gr.Button( |
|
value="Start Tracking", |
|
interactive=True, |
|
) |
|
reset_button = gr.Button( |
|
value="Reset", |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(scale=0.5): |
|
output_video = gr.Video(label='Visualize Results', elem_id="input_output_video") |
|
output_mp4 = gr.File(label="Predicted video") |
|
output_mask = gr.File(label="Predicted masks") |
|
|
|
with gr.Tab(label='Video examples'): |
|
gr.Examples( |
|
label="", |
|
examples=[ |
|
"assets/12fps_Dancing_cells_trimmed.mp4", |
|
"assets/clip_012251_fps5_07_25.mp4", |
|
"assets/FLARE22_Tr_0004.mp4", |
|
"assets/FLARE22_Tr_0016.mp4", |
|
"assets/FLARE22_Tr_0046.mp4", |
|
"assets/c_elegans_mov_cut_fps12.mp4", |
|
"assets/12fps_Dylan_Burnette_neutrophil.mp4", |
|
], |
|
inputs=[input_video], |
|
) |
|
gr.Examples( |
|
label="", |
|
examples=[ |
|
"assets/12fps_volvox_microcystis_play_trimmed.mp4", |
|
"assets/12fps_neuron_time_lapse.mp4", |
|
"assets/12fps_macrophages_phagocytosis.mp4", |
|
"assets/12fps_worm_eats_organism_3.mp4", |
|
"assets/12fps_worm_eats_organism_4.mp4", |
|
"assets/12fps_worm_eats_organism_5.mp4", |
|
"assets/12fps_worm_eats_organism_6.mp4", |
|
"assets/12fps_02_cups.mp4", |
|
], |
|
inputs=[input_video], |
|
) |
|
gr.Markdown( |
|
''' |
|
<div style="text-align:center; margin-top: 20px;"> |
|
The authors of this work highly appreciate Meta AI for making SAM2 publicly available to the community. |
|
The interface was built on <a href="https://github.com/z-x-yang/Segment-and-Track-Anything/blob/main/tutorial/tutorial%20for%20WebUI-1.0-Version.md" target="_blank">SegTracker</a>. |
|
<a href="https://docs.google.com/document/d/1idDBV0faOjdjVs-iAHr0uSrw_9_ZzLGrUI2FEdK-lso/edit?usp=sharing" target="_blank">Data source</a> |
|
</div> |
|
''' |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess_button.click( |
|
fn=get_meta_from_video, |
|
inputs=[ |
|
Seg_Tracker, |
|
input_video, |
|
scale_slider, |
|
checkpoint |
|
], |
|
outputs=[ |
|
Seg_Tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id |
|
] |
|
) |
|
|
|
frame_per.release( |
|
fn=show_res_by_slider, |
|
inputs=[ |
|
frame_per, click_stack |
|
], |
|
outputs=[ |
|
input_first_frame, drawing_board, frame_num |
|
] |
|
) |
|
|
|
|
|
input_first_frame.select( |
|
fn=sam_click, |
|
inputs=[ |
|
Seg_Tracker, frame_num, point_mode, click_stack, ann_obj_id |
|
], |
|
outputs=[ |
|
Seg_Tracker, input_first_frame, drawing_board, click_stack |
|
] |
|
) |
|
|
|
|
|
track_for_video.click( |
|
fn=tracking_objects, |
|
inputs=[ |
|
Seg_Tracker, |
|
frame_num, |
|
input_video, |
|
], |
|
outputs=[ |
|
input_first_frame, |
|
drawing_board, |
|
output_video, |
|
output_mp4, |
|
output_mask |
|
] |
|
) |
|
|
|
reset_button.click( |
|
fn=clean, |
|
inputs=[ |
|
Seg_Tracker |
|
], |
|
outputs=[ |
|
Seg_Tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id |
|
] |
|
) |
|
|
|
new_object_button.click( |
|
fn=increment_ann_obj_id, |
|
inputs=[ |
|
ann_obj_id |
|
], |
|
outputs=[ |
|
ann_obj_id |
|
] |
|
) |
|
|
|
tab_stroke.select( |
|
fn=drawing_board_get_input_first_frame, |
|
inputs=[input_first_frame,], |
|
outputs=[drawing_board,], |
|
) |
|
|
|
seg_acc_stroke.click( |
|
fn=sam_stroke, |
|
inputs=[ |
|
Seg_Tracker, drawing_board, last_draw, frame_num, ann_obj_id |
|
], |
|
outputs=[ |
|
Seg_Tracker, input_first_frame, drawing_board, last_draw |
|
] |
|
) |
|
|
|
app.queue(concurrency_count=1) |
|
app.launch(debug=True, enable_queue=True, share=True) |
|
|
|
if __name__ == "__main__": |
|
seg_track_app() |
|
|