File size: 5,788 Bytes
96e2d26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import g4f
import gradio as gr
from g4f.Provider import (
    Ails,
    You,
    Bing,
    Yqcloud,
    Theb,
    Aichat,
    Bard,
    Vercel,
    Forefront,
    Lockchat,
    Liaobots,
    H2o,
    ChatgptLogin,
    DeepAi,
    GetGpt
)
import os
import json
import pandas as pd

from models_for_langchain.model import CustomLLM
from langchain.memory import ConversationBufferWindowMemory, ConversationTokenBufferMemory
from langchain import LLMChain, PromptTemplate
from langchain.prompts import (
    ChatPromptTemplate,
    PromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

provider_dict = {
    'Ails': Ails,
    'You': You,
    'Bing': Bing,
    'Yqcloud': Yqcloud,
    'Theb': Theb,
    'Aichat': Aichat,
    'Bard': Bard,
    'Vercel': Vercel,
    'Forefront': Forefront,
    'Lockchat': Lockchat,
    'Liaobots': Liaobots,
    'H2o': H2o,
    'ChatgptLogin': ChatgptLogin,
    'DeepAi': DeepAi,
    'GetGpt': GetGpt
}

prompt_set_list = {}
for prompt_file in os.listdir("prompt_set"):
    key = prompt_file
    if '.csv' in key:
        df = pd.read_csv("prompt_set/" + prompt_file)
        prompt_dict = dict(zip(df['act'], df['prompt']))
    else:
        with open("prompt_set/" + prompt_file, encoding='utf-8') as f:
            ds = json.load(f)
        prompt_dict = {item["act"]: item["prompt"] for item in ds}
    prompt_set_list[key] = prompt_dict

with gr.Blocks() as demo:
    llm = CustomLLM()

    template = """
    Chat with human based on following instructions:
    ```
    {system_instruction}
    ```
    The following is a conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
    {{chat_history}}
    Human: {{human_input}}
    Chatbot:"""

    memory = ConversationBufferWindowMemory(k=10, memory_key="chat_history")

    chatbot = gr.Chatbot([[None, None]], label='AI')
    msg = gr.Textbox(value="", label='请输入:')
    with gr.Row():
        clear = gr.Button("清空对话", scale=2)
        chat_mode = gr.Checkbox(value=True, label='聊天模式', interactive=True, scale=1)
    system_msg = gr.Textbox(value="你是一名助手,可以解答问题。", label='系统提示')
    with gr.Row():
        default_prompt_set = "1 中文提示词.json"
        prompt_set_name = gr.Dropdown(prompt_set_list.keys(), value=default_prompt_set, label='提示词集合')
        prompt_name = gr.Dropdown(prompt_set_list[default_prompt_set].keys(), label='提示词', min_width=20)
    with gr.Row():
        model_name = gr.Dropdown(['gpt-3.5-turbo', 'gpt-4'], value='gpt-3.5-turbo', label='模型')
        provider_name  =  gr.Dropdown(provider_dict.keys(), value='GetGpt', label='提供者', min_width=20)

    def change_prompt_set(prompt_set_name):
        return gr.Dropdown.update(choices=list(prompt_set_list[prompt_set_name].keys()))

    def change_prompt(prompt_set_name, prompt_name):
        return gr.update(value=prompt_set_list[prompt_set_name][prompt_name])

    def user(user_message, history):
        return gr.update(value="", interactive=False), history + [[user_message, None]]

    def bot(history, model_name, provider_name, system_msg, chat_mode):
        history[-1][1] = ''
        if len(system_msg)>3000:
            system_msg = system_msg[:2000] + system_msg[-1000:]

        if not chat_mode:
            global template, memory
            llm.model_name = model_name
            llm.provider_name = provider_name
            prompt = PromptTemplate(
                                input_variables=["chat_history", "human_input"], template=template.format(system_instruction=system_msg)
                            )
            llm_chain = LLMChain(
                                llm=llm,
                                prompt=prompt,
                                verbose=False,
                                memory=memory,
                            )
            bot_msg = llm_chain.run(history[-1][0])
            for c in bot_msg:
                history[-1][1] += c
                yield history
        else:
            prompt = """
            请你仔细阅读以下提示,然后针对用户的话进行回答。
            提示:
            ```
            {}
            ```
            用户最新的话:
            ```
            {}
            ```
            请回答:
            """
            bot_msg = g4f.ChatCompletion.create(
                                            model=model_name, 
                                            provider=provider_dict[provider_name], 
                                            messages=[{"role": "user", 
                                                        "content": prompt.format(system_msg,
                                                                                history[-1][0])}],
                                            stream=True)
            for c in bot_msg:
                history[-1][1] += c
                yield history

    def empty_chat():
        global memory
        memory = ConversationBufferWindowMemory(k=10, memory_key="chat_history")
        return None
    response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, [chatbot, model_name, provider_name, system_msg, chat_mode], chatbot
    )
    prompt_set_name.select(change_prompt_set, prompt_set_name, prompt_name)
    prompt_name.select(change_prompt, [prompt_set_name, prompt_name], system_msg)

    response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
    clear.click(empty_chat, None, [chatbot], queue=False)

demo.title = "AI Chat"
demo.queue()
demo.launch()