Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- app.py +171 -0
- requirements.txt +7 -0
- utils/__init__.py +0 -0
- utils/annotate.py +17 -0
- utils/imports.py +13 -0
- utils/models.py +73 -0
- utils/tasks.py +79 -0
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Optional
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import supervision as sv
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from gradio_image_prompter import ImagePrompter
|
9 |
+
|
10 |
+
from utils.annotate import annotate_with_boxes
|
11 |
+
from utils.models import load_models, run_inference, CHECKPOINTS, \
|
12 |
+
pre_process_region_task_input, post_process_region_output
|
13 |
+
from utils.tasks import TASK_NAMES, TASKS, OBJECT_DETECTION_TASK_NAME, \
|
14 |
+
CAPTION_TASK_NAME, DETAILED_CAPTION_TASK_NAME, \
|
15 |
+
MORE_DETAILED_CAPTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME, OCR_TASK_NAME, \
|
16 |
+
IMAGE_INPUT_TASK_NAMES, IMAGE_PROMPTER_INPUT_TASK_NAMES, IMAGE_OUTPUT_TASK_NAMES, \
|
17 |
+
TEXTBOX_OUTPUT_TASK_NAMES, IMAGE_TO_IMAGE_TASK_NAMES, IMAGE_TO_TEXT_TASK_NAMES, \
|
18 |
+
IMAGE_PROMPT_TO_IMAGE_TASK_NAMES, REGION_PROPOSAL_TASK_NAME, \
|
19 |
+
DENSE_REGION_CAPTION_TASK_NAME
|
20 |
+
|
21 |
+
MARKDOWN = """
|
22 |
+
# Florence-2 🔥
|
23 |
+
|
24 |
+
Florence-2 is a lightweight vision-language model open-sourced by Microsoft under the
|
25 |
+
MIT license. The model demonstrates strong zero-shot and fine-tuning capabilities
|
26 |
+
across tasks such as captioning, object detection, grounding, and segmentation.
|
27 |
+
The model takes images and task prompts as input, generating the desired results in
|
28 |
+
text format. It uses a DaViT vision encoder to convert images into visual token
|
29 |
+
embeddings. These are then concatenated with BERT-generated text embeddings and
|
30 |
+
processed by a transformer-based multi-modal encoder-decoder to generate the response.
|
31 |
+
"""
|
32 |
+
EXAMPLES = [
|
33 |
+
["microsoft/Florence-2-large-ft", OBJECT_DETECTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
34 |
+
["microsoft/Florence-2-large-ft", REGION_PROPOSAL_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
35 |
+
["microsoft/Florence-2-large-ft", DENSE_REGION_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
36 |
+
["microsoft/Florence-2-large-ft", CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
37 |
+
["microsoft/Florence-2-large-ft", DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
38 |
+
["microsoft/Florence-2-large-ft", MORE_DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
39 |
+
["microsoft/Florence-2-large-ft", OCR_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
40 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
41 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
42 |
+
]
|
43 |
+
|
44 |
+
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
DEVICE = "cuda"
|
46 |
+
MODELS, PROCESSORS = load_models(DEVICE)
|
47 |
+
|
48 |
+
|
49 |
+
@spaces.GPU
|
50 |
+
def process(
|
51 |
+
checkpoint_dropdown,
|
52 |
+
task_dropdown,
|
53 |
+
image_input,
|
54 |
+
image_prompter_input
|
55 |
+
) -> Tuple[Optional[Image.Image], Optional[str]]:
|
56 |
+
model = MODELS[checkpoint_dropdown]
|
57 |
+
processor = PROCESSORS[checkpoint_dropdown]
|
58 |
+
task = TASKS[task_dropdown]
|
59 |
+
|
60 |
+
if task_dropdown in IMAGE_TO_IMAGE_TASK_NAMES:
|
61 |
+
_, response = run_inference(
|
62 |
+
model, processor, DEVICE, image_input, task)
|
63 |
+
detections = sv.Detections.from_lmm(
|
64 |
+
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
65 |
+
return annotate_with_boxes(image_input, detections), None
|
66 |
+
|
67 |
+
elif task_dropdown in IMAGE_TO_TEXT_TASK_NAMES:
|
68 |
+
_, response = run_inference(
|
69 |
+
model, processor, DEVICE, image_input, task)
|
70 |
+
return None, response[task]
|
71 |
+
|
72 |
+
elif task_dropdown in IMAGE_PROMPT_TO_IMAGE_TASK_NAMES:
|
73 |
+
detections_list = []
|
74 |
+
|
75 |
+
print(image_prompter_input)
|
76 |
+
|
77 |
+
image_input = image_prompter_input["image"]
|
78 |
+
for prompt in image_prompter_input["points"]:
|
79 |
+
text = pre_process_region_task_input(
|
80 |
+
prompt=prompt,
|
81 |
+
resolution_wh=image_input.size
|
82 |
+
)
|
83 |
+
_, response = run_inference(
|
84 |
+
model, processor, DEVICE, image_input, task, text)
|
85 |
+
detections = sv.Detections.from_lmm(
|
86 |
+
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
87 |
+
detections_list.append(detections)
|
88 |
+
detections = sv.Detections.merge(detections_list=detections_list)
|
89 |
+
detections = post_process_region_output(
|
90 |
+
detections=detections, resolution_wh=image_input.size)
|
91 |
+
|
92 |
+
return annotate_with_boxes(image_input, detections), None
|
93 |
+
|
94 |
+
|
95 |
+
with gr.Blocks() as demo:
|
96 |
+
gr.Markdown(MARKDOWN)
|
97 |
+
with gr.Row():
|
98 |
+
checkpoint_dropdown_component = gr.Dropdown(
|
99 |
+
choices=CHECKPOINTS,
|
100 |
+
value=CHECKPOINTS[0],
|
101 |
+
label="Model", info="Select a Florence 2 model to use.",
|
102 |
+
interactive=True
|
103 |
+
)
|
104 |
+
task_dropdown_component = gr.Dropdown(
|
105 |
+
choices=TASK_NAMES,
|
106 |
+
value=TASK_NAMES[0],
|
107 |
+
label="Task", info="Select a task to perform with the model.",
|
108 |
+
interactive=True
|
109 |
+
)
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
image_input_component = gr.Image(
|
114 |
+
type='pil', label='Upload image')
|
115 |
+
image_prompter_input_component = ImagePrompter(
|
116 |
+
type='pil', label='Image prompt', visible=False)
|
117 |
+
submit_button_component = gr.Button(value='Submit', variant='primary')
|
118 |
+
|
119 |
+
with gr.Column():
|
120 |
+
image_output_component = gr.Image(type='pil', label='Image Output')
|
121 |
+
text_output_component = gr.Textbox(label='Caption Output', visible=False)
|
122 |
+
with gr.Row():
|
123 |
+
gr.Examples(
|
124 |
+
fn=process,
|
125 |
+
examples=EXAMPLES,
|
126 |
+
inputs=[
|
127 |
+
checkpoint_dropdown_component,
|
128 |
+
task_dropdown_component,
|
129 |
+
image_input_component,
|
130 |
+
image_prompter_input_component
|
131 |
+
],
|
132 |
+
outputs=[
|
133 |
+
image_output_component,
|
134 |
+
text_output_component
|
135 |
+
],
|
136 |
+
run_on_click=True
|
137 |
+
)
|
138 |
+
|
139 |
+
def on_dropdown_change(text):
|
140 |
+
return [
|
141 |
+
gr.Image(visible=text in IMAGE_INPUT_TASK_NAMES),
|
142 |
+
ImagePrompter(visible=text in IMAGE_PROMPTER_INPUT_TASK_NAMES),
|
143 |
+
gr.Image(visible=text in IMAGE_OUTPUT_TASK_NAMES),
|
144 |
+
gr.Textbox(visible=text in TEXTBOX_OUTPUT_TASK_NAMES)
|
145 |
+
]
|
146 |
+
|
147 |
+
task_dropdown_component.change(
|
148 |
+
on_dropdown_change,
|
149 |
+
inputs=[task_dropdown_component],
|
150 |
+
outputs=[
|
151 |
+
image_input_component,
|
152 |
+
image_prompter_input_component,
|
153 |
+
image_output_component,
|
154 |
+
text_output_component
|
155 |
+
]
|
156 |
+
)
|
157 |
+
submit_button_component.click(
|
158 |
+
fn=process,
|
159 |
+
inputs=[
|
160 |
+
checkpoint_dropdown_component,
|
161 |
+
task_dropdown_component,
|
162 |
+
image_input_component,
|
163 |
+
image_prompter_input_component
|
164 |
+
],
|
165 |
+
outputs=[
|
166 |
+
image_output_component,
|
167 |
+
text_output_component
|
168 |
+
]
|
169 |
+
)
|
170 |
+
|
171 |
+
demo.launch(debug=False, show_error=True, max_threads=1)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops
|
2 |
+
spaces
|
3 |
+
timm
|
4 |
+
gradio
|
5 |
+
transformers
|
6 |
+
gradio-image-prompter
|
7 |
+
supervision==0.22.0rc1
|
utils/__init__.py
ADDED
File without changes
|
utils/annotate.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import supervision as sv
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
|
5 |
+
def annotate_with_boxes(image: Image, detections: sv.Detections) -> Image:
|
6 |
+
annotated_image = image.copy()
|
7 |
+
thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size)
|
8 |
+
text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
|
9 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator(
|
10 |
+
color_lookup=sv.ColorLookup.INDEX, thickness=thickness)
|
11 |
+
label_annotator = sv.LabelAnnotator(
|
12 |
+
color_lookup=sv.ColorLookup.INDEX,
|
13 |
+
text_scale=text_scale,
|
14 |
+
text_thickness=thickness)
|
15 |
+
annotated_image = bounding_box_annotator.annotate(annotated_image, detections)
|
16 |
+
annotated_image = label_annotator.annotate(annotated_image, detections)
|
17 |
+
return annotated_image
|
utils/imports.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from typing import Union
|
4 |
+
from transformers.dynamic_module_utils import get_imports
|
5 |
+
|
6 |
+
|
7 |
+
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
|
8 |
+
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
|
9 |
+
if not str(filename).endswith("/modeling_florence2.py"):
|
10 |
+
return get_imports(filename)
|
11 |
+
imports = get_imports(filename)
|
12 |
+
imports.remove("flash_attn")
|
13 |
+
return imports
|
utils/models.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Dict, Any, List
|
2 |
+
from unittest.mock import patch
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import supervision as sv
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
9 |
+
|
10 |
+
from utils.imports import fixed_get_imports
|
11 |
+
|
12 |
+
CHECKPOINTS = [
|
13 |
+
"microsoft/Florence-2-large-ft",
|
14 |
+
"microsoft/Florence-2-large",
|
15 |
+
"microsoft/Florence-2-base-ft",
|
16 |
+
"microsoft/Florence-2-base",
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def load_models(device: torch.device) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
21 |
+
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
|
22 |
+
models = {}
|
23 |
+
processors = {}
|
24 |
+
for checkpoint in CHECKPOINTS:
|
25 |
+
models[checkpoint] = AutoModelForCausalLM.from_pretrained(
|
26 |
+
checkpoint, trust_remote_code=True).to(device).eval()
|
27 |
+
processors[checkpoint] = AutoProcessor.from_pretrained(
|
28 |
+
checkpoint, trust_remote_code=True)
|
29 |
+
return models, processors
|
30 |
+
|
31 |
+
|
32 |
+
def run_inference(
|
33 |
+
model: Any,
|
34 |
+
processor: Any,
|
35 |
+
device: torch.device,
|
36 |
+
image: Image,
|
37 |
+
task: str,
|
38 |
+
text: str = ""
|
39 |
+
) -> Tuple[str, Dict]:
|
40 |
+
prompt = task + text
|
41 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
42 |
+
generated_ids = model.generate(
|
43 |
+
input_ids=inputs["input_ids"],
|
44 |
+
pixel_values=inputs["pixel_values"],
|
45 |
+
max_new_tokens=1024,
|
46 |
+
num_beams=3
|
47 |
+
)
|
48 |
+
generated_text = processor.batch_decode(
|
49 |
+
generated_ids, skip_special_tokens=False)[0]
|
50 |
+
response = processor.post_process_generation(
|
51 |
+
generated_text, task=task, image_size=image.size)
|
52 |
+
return generated_text, response
|
53 |
+
|
54 |
+
|
55 |
+
def pre_process_region_task_input(
|
56 |
+
prompt: List[float],
|
57 |
+
resolution_wh: Tuple[int, int]
|
58 |
+
) -> str:
|
59 |
+
x1, y1, _, x2, y2, _ = prompt
|
60 |
+
w, h = resolution_wh
|
61 |
+
box = np.array([x1, y1, x2, y2])
|
62 |
+
box /= np.array([w, h, w, h])
|
63 |
+
box *= 1000
|
64 |
+
return "".join([f"<loc_{int(coordinate)}>" for coordinate in box])
|
65 |
+
|
66 |
+
|
67 |
+
def post_process_region_output(
|
68 |
+
detections: sv.Detections,
|
69 |
+
resolution_wh: Tuple[int, int]
|
70 |
+
) -> sv.Detections:
|
71 |
+
w, h = resolution_wh
|
72 |
+
detections.xyxy = (detections.xyxy / 1000 * np.array([w, h, w, h])).astype(np.int32)
|
73 |
+
return detections
|
utils/tasks.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OBJECT_DETECTION_TASK_NAME = "Object Detection"
|
2 |
+
REGION_PROPOSAL_TASK_NAME = "Region Proposal"
|
3 |
+
DENSE_REGION_CAPTION_TASK_NAME = "Dense Region Caption"
|
4 |
+
CAPTION_TASK_NAME = "Caption"
|
5 |
+
DETAILED_CAPTION_TASK_NAME = "Detailed Caption"
|
6 |
+
MORE_DETAILED_CAPTION_TASK_NAME = "More Detailed Caption"
|
7 |
+
OCR_TASK_NAME = "OCR"
|
8 |
+
OCR_WITH_REGION_TASK_NAME = "OCR with Region"
|
9 |
+
REGION_TO_CATEGORY_TASK_NAME = "Region to Category"
|
10 |
+
REGION_TO_DESCRIPTION_TASK_NAME = "Region to Description"
|
11 |
+
|
12 |
+
TASK_NAMES = [
|
13 |
+
OBJECT_DETECTION_TASK_NAME,
|
14 |
+
REGION_PROPOSAL_TASK_NAME,
|
15 |
+
DENSE_REGION_CAPTION_TASK_NAME,
|
16 |
+
CAPTION_TASK_NAME,
|
17 |
+
DETAILED_CAPTION_TASK_NAME,
|
18 |
+
MORE_DETAILED_CAPTION_TASK_NAME,
|
19 |
+
OCR_TASK_NAME,
|
20 |
+
OCR_WITH_REGION_TASK_NAME,
|
21 |
+
REGION_TO_CATEGORY_TASK_NAME,
|
22 |
+
REGION_TO_DESCRIPTION_TASK_NAME
|
23 |
+
]
|
24 |
+
TASKS = {
|
25 |
+
OBJECT_DETECTION_TASK_NAME: "<OD>",
|
26 |
+
REGION_PROPOSAL_TASK_NAME: "<REGION_PROPOSAL>",
|
27 |
+
DENSE_REGION_CAPTION_TASK_NAME: "<DENSE_REGION_CAPTION>",
|
28 |
+
CAPTION_TASK_NAME: "<CAPTION>",
|
29 |
+
DETAILED_CAPTION_TASK_NAME: "<DETAILED_CAPTION>",
|
30 |
+
MORE_DETAILED_CAPTION_TASK_NAME: "<MORE_DETAILED_CAPTION>",
|
31 |
+
OCR_TASK_NAME: "<OCR>",
|
32 |
+
OCR_WITH_REGION_TASK_NAME: "<OCR_WITH_REGION>",
|
33 |
+
REGION_TO_CATEGORY_TASK_NAME: "<REGION_TO_CATEGORY>",
|
34 |
+
REGION_TO_DESCRIPTION_TASK_NAME: "<REGION_TO_DESCRIPTION>"
|
35 |
+
}
|
36 |
+
IMAGE_INPUT_TASK_NAMES = [
|
37 |
+
OBJECT_DETECTION_TASK_NAME,
|
38 |
+
REGION_PROPOSAL_TASK_NAME,
|
39 |
+
DENSE_REGION_CAPTION_TASK_NAME,
|
40 |
+
CAPTION_TASK_NAME,
|
41 |
+
DETAILED_CAPTION_TASK_NAME,
|
42 |
+
MORE_DETAILED_CAPTION_TASK_NAME,
|
43 |
+
OCR_TASK_NAME,
|
44 |
+
OCR_WITH_REGION_TASK_NAME,
|
45 |
+
]
|
46 |
+
IMAGE_PROMPTER_INPUT_TASK_NAMES = [
|
47 |
+
REGION_TO_CATEGORY_TASK_NAME,
|
48 |
+
REGION_TO_DESCRIPTION_TASK_NAME
|
49 |
+
]
|
50 |
+
IMAGE_OUTPUT_TASK_NAMES = [
|
51 |
+
OBJECT_DETECTION_TASK_NAME,
|
52 |
+
REGION_PROPOSAL_TASK_NAME,
|
53 |
+
DENSE_REGION_CAPTION_TASK_NAME,
|
54 |
+
OCR_WITH_REGION_TASK_NAME,
|
55 |
+
REGION_TO_CATEGORY_TASK_NAME,
|
56 |
+
REGION_TO_DESCRIPTION_TASK_NAME
|
57 |
+
]
|
58 |
+
TEXTBOX_OUTPUT_TASK_NAMES = [
|
59 |
+
CAPTION_TASK_NAME,
|
60 |
+
DETAILED_CAPTION_TASK_NAME,
|
61 |
+
MORE_DETAILED_CAPTION_TASK_NAME,
|
62 |
+
OCR_TASK_NAME
|
63 |
+
]
|
64 |
+
IMAGE_TO_IMAGE_TASK_NAMES = [
|
65 |
+
OBJECT_DETECTION_TASK_NAME,
|
66 |
+
OCR_WITH_REGION_TASK_NAME,
|
67 |
+
REGION_PROPOSAL_TASK_NAME,
|
68 |
+
DENSE_REGION_CAPTION_TASK_NAME
|
69 |
+
]
|
70 |
+
IMAGE_TO_TEXT_TASK_NAMES = [
|
71 |
+
CAPTION_TASK_NAME,
|
72 |
+
DETAILED_CAPTION_TASK_NAME,
|
73 |
+
MORE_DETAILED_CAPTION_TASK_NAME,
|
74 |
+
OCR_TASK_NAME
|
75 |
+
]
|
76 |
+
IMAGE_PROMPT_TO_IMAGE_TASK_NAMES = [
|
77 |
+
REGION_TO_CATEGORY_TASK_NAME,
|
78 |
+
REGION_TO_DESCRIPTION_TASK_NAME
|
79 |
+
]
|