csukuangfj's picture
update vad config
e20c448
raw
history blame
18.8 kB
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import lru_cache
import sherpa_onnx
from huggingface_hub import hf_hub_download
sample_rate = 16000
def _get_nn_model_filename(
repo_id: str,
filename: str,
subfolder: str = "exp",
) -> str:
nn_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return nn_model_filename
get_file = _get_nn_model_filename
def _get_bpe_model_filename(
repo_id: str,
filename: str = "bpe.model",
subfolder: str = "data/lang_bpe_500",
) -> str:
bpe_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return bpe_model_filename
def _get_token_filename(
repo_id: str,
filename: str = "tokens.txt",
subfolder: str = "data/lang_char",
) -> str:
token_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return token_filename
@lru_cache(maxsize=10)
def _get_whisper_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
name = repo_id.split("-")[1]
assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id
full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
encoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"{name}-encoder.int8.onnx",
subfolder=".",
)
decoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"{name}-decoder.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(
repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt"
)
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
encoder=encoder,
decoder=decoder,
tokens=tokens,
num_threads=2,
tail_paddings=2000,
)
return recognizer
@lru_cache(maxsize=10)
def _get_paraformer_zh_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=nn_model,
tokens=tokens,
num_threads=2,
sample_rate=sample_rate,
feature_dim=80,
decoding_method="greedy_search",
debug=False,
)
return recognizer
@lru_cache(maxsize=5)
def _get_chinese_dialect_models(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_telespeech_ctc(
model=nn_model,
tokens=tokens,
num_threads=2,
)
return recognizer
@lru_cache(maxsize=10)
def _get_russian_pre_trained_model_ctc(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24",
), repo_id
model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc(
model=model,
tokens=tokens,
num_threads=2,
)
return recognizer
@lru_cache(maxsize=10)
def _get_russian_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"alphacep/vosk-model-ru",
"alphacep/vosk-model-small-ru",
"csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24",
), repo_id
if repo_id == "alphacep/vosk-model-ru":
model_dir = "am-onnx"
encoder = "encoder.onnx"
model_type = "transducer"
elif repo_id == "alphacep/vosk-model-small-ru":
model_dir = "am"
encoder = "encoder.onnx"
model_type = "transducer"
elif repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24":
model_dir = "."
encoder = "encoder.int8.onnx"
model_type = "nemo_transducer"
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename=encoder,
subfolder=model_dir,
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder.onnx",
subfolder=model_dir,
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner.onnx",
subfolder=model_dir,
)
if repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24":
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
else:
tokens = _get_token_filename(repo_id=repo_id, subfolder="lang")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
model_type=model_type,
)
return recognizer
@lru_cache(maxsize=2)
def get_punct_model() -> sherpa_onnx.OfflinePunctuation:
model = _get_nn_model_filename(
repo_id="csukuangfj/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12",
filename="model.onnx",
subfolder=".",
)
config = sherpa_onnx.OfflinePunctuationConfig(
model=sherpa_onnx.OfflinePunctuationModelConfig(ct_transformer=model),
)
punct = sherpa_onnx.OfflinePunctuation(config)
return punct
def get_vad() -> sherpa_onnx.VoiceActivityDetector:
vad_model = _get_nn_model_filename(
repo_id="csukuangfj/vad",
filename="silero_vad_v5.onnx",
subfolder=".",
)
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = vad_model
config.silero_vad.threshold = 0.5
config.silero_vad.min_silence_duration = 0.25
config.silero_vad.min_speech_duration = 0.25
config.sample_rate = sample_rate
config.silero_vad.max_speech_duration = 20 # seconds
vad = sherpa_onnx.VoiceActivityDetector(
config,
buffer_size_in_seconds=180,
)
return vad
@lru_cache(maxsize=10)
def get_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
if repo_id in chinese_models:
return chinese_models[repo_id](repo_id)
elif repo_id in chinese_dialect_models:
return chinese_dialect_models[repo_id](repo_id)
elif repo_id in english_models:
return english_models[repo_id](repo_id)
elif repo_id in chinese_english_mixed_models:
return chinese_english_mixed_models[repo_id](repo_id)
elif repo_id in russian_models:
return russian_models[repo_id](repo_id)
elif repo_id in korean_models:
return korean_models[repo_id](repo_id)
elif repo_id in thai_models:
return thai_models[repo_id](repo_id)
elif repo_id in japanese_models:
return japanese_models[repo_id](repo_id)
elif repo_id in zh_en_ko_ja_yue_models:
return zh_en_ko_ja_yue_models[repo_id](repo_id)
else:
raise ValueError(f"Unsupported repo_id: {repo_id}")
def _get_wenetspeech_pre_trained_model(repo_id):
assert repo_id in (
"csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23",
), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-99-avg-1.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-99-avg-1.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-99-avg-1.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
return recognizer
def _get_multi_zh_hans_pre_trained_model(repo_id):
assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-20-avg-1.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-20-avg-1.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-20-avg-1.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
return recognizer
@lru_cache(maxsize=10)
def _get_moonshine_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in ("moonshine-tiny", "moonshine-base"), repo_id
if repo_id == "moonshine-tiny":
full_repo_id = "csukuangfj/sherpa-onnx-moonshine-tiny-en-int8"
elif repo_id == "moonshine-base":
full_repo_id = "csukuangfj/sherpa-onnx-moonshine-base-en-int8"
else:
raise ValueError(f"Unknown repo_id: {repo_id}")
preprocessor = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"preprocess.onnx",
subfolder=".",
)
encoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"encode.int8.onnx",
subfolder=".",
)
uncached_decoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"uncached_decode.int8.onnx",
subfolder=".",
)
cached_decoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"cached_decode.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(
repo_id=full_repo_id,
subfolder=".",
filename="tokens.txt",
)
recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine(
preprocessor=preprocessor,
encoder=encoder,
uncached_decoder=uncached_decoder,
cached_decoder=cached_decoder,
tokens=tokens,
num_threads=2,
)
return recognizer
def _get_english_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert (
repo_id
== "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04"
), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-30-avg-4.onnx",
subfolder="exp",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-30-avg-4.onnx",
subfolder="exp",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-30-avg-4.onnx",
subfolder="exp",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="lang_bpe_500")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search",
)
return recognizer
@lru_cache(maxsize=10)
def _get_korean_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in ("k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24",), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-99-avg-1.int8.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-99-avg-1.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-99-avg-1.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
)
return recognizer
@lru_cache(maxsize=10)
def _get_japanese_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in ("reazon-research/reazonspeech-k2-v2",), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-99-avg-1.int8.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-99-avg-1.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-99-avg-1.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
)
return recognizer
@lru_cache(maxsize=10)
def _get_yifan_thai_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20",
), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-12-avg-5.int8.onnx",
subfolder="exp",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-12-avg-5.onnx",
subfolder="exp",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-12-avg-5.int8.onnx",
subfolder="exp",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_2000")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
)
return recognizer
@lru_cache(maxsize=10)
def _get_sense_voice_pre_trained_model(
repo_id: str,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=nn_model,
tokens=tokens,
num_threads=2,
sample_rate=sample_rate,
feature_dim=80,
decoding_method="greedy_search",
debug=True,
use_itn=True,
)
return recognizer
chinese_dialect_models = {
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04": _get_chinese_dialect_models,
}
zh_en_ko_ja_yue_models = {
"csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17": _get_sense_voice_pre_trained_model,
}
chinese_models = {
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model,
"csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23": _get_wenetspeech_pre_trained_model, # noqa
"zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model, # noqa
}
english_models = {
"whisper-tiny.en": _get_whisper_model,
"moonshine-tiny": _get_moonshine_model,
"moonshine-base": _get_moonshine_model,
"whisper-base.en": _get_whisper_model,
"whisper-small.en": _get_whisper_model,
"whisper-distil-small.en": _get_whisper_model,
"whisper-medium.en": _get_whisper_model,
"whisper-distil-medium.en": _get_whisper_model,
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, # noqa
}
chinese_english_mixed_models = {
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model,
}
korean_models = {
"k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24": _get_korean_pre_trained_model,
}
russian_models = {
"csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": _get_russian_pre_trained_model,
"csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24": _get_russian_pre_trained_model_ctc,
"alphacep/vosk-model-ru": _get_russian_pre_trained_model,
"alphacep/vosk-model-small-ru": _get_russian_pre_trained_model,
}
thai_models = {
"yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20": _get_yifan_thai_pretrained_model,
}
japanese_models = {
"reazon-research/reazonspeech-k2-v2": _get_japanese_pre_trained_model
}
language_to_models = {
"超多种中文方言": list(chinese_dialect_models.keys()),
"Chinese+English": list(chinese_english_mixed_models.keys()),
"Chinese+English+Korean+Japanese+Cantoes(中英韩日粤语)": list(
zh_en_ko_ja_yue_models.keys()
),
"Chinese": list(chinese_models.keys()),
"English": list(english_models.keys()),
"Russian": list(russian_models.keys()),
"Korean": list(korean_models.keys()),
"Thai": list(thai_models.keys()),
"Japanese": list(japanese_models.keys()),
}