csukuangfj's picture
minor fixes
d2cc323
raw
history blame
5.37 kB
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import wave
from functools import lru_cache
from typing import Tuple
import numpy as np
import sherpa_onnx
from huggingface_hub import hf_hub_download
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
@lru_cache(maxsize=30)
def _get_nn_model_filename(
repo_id: str,
filename: str,
subfolder: str = ".",
) -> str:
nn_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return nn_model_filename
def get_speaker_segmentation_model(repo_id) -> str:
assert repo_id in ("pyannote/segmentation-3.0",)
if repo_id == "pyannote/segmentation-3.0":
return _get_nn_model_filename(
repo_id="csukuangfj/sherpa-onnx-pyannote-segmentation-3-0",
filename="model.onnx",
)
def get_speaker_embedding_model(model_name) -> str:
assert (
model_name
in three_d_speaker_embedding_models
+ nemo_speaker_embedding_models
+ wespeaker_embedding_models
)
model_name = model_name.split("|")[0]
return _get_nn_model_filename(
repo_id="csukuangfj/speaker-embedding-models",
filename=model_name,
)
def get_speaker_diarization(
segmentation_model: str, embedding_model: str, num_clusters: int, threshold: float
):
segmentation = get_speaker_segmentation_model(segmentation_model)
embedding = get_speaker_embedding_model(embedding_model)
config = sherpa_onnx.OfflineSpeakerDiarizationConfig(
segmentation=sherpa_onnx.OfflineSpeakerSegmentationModelConfig(
pyannote=sherpa_onnx.OfflineSpeakerSegmentationPyannoteModelConfig(
model=segmentation
),
debug=True,
),
embedding=sherpa_onnx.SpeakerEmbeddingExtractorConfig(
model=embedding,
debug=True,
),
clustering=sherpa_onnx.FastClusteringConfig(
num_clusters=num_clusters,
threshold=threshold,
),
min_duration_on=0.3,
min_duration_off=0.5,
)
print("config", config)
if not config.validate():
raise RuntimeError(
"Please check your config and make sure all required files exist"
)
return sherpa_onnx.OfflineSpeakerDiarization(config)
speaker_segmentation_models = ["pyannote/segmentation-3.0"]
nemo_speaker_embedding_models = [
"nemo_en_speakerverification_speakernet.onnx|22MB",
"nemo_en_titanet_large.onnx|97MB",
"nemo_en_titanet_small.onnx|38MB",
]
three_d_speaker_embedding_models = [
"3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx|37.8MB",
"3dspeaker_speech_campplus_sv_en_voxceleb_16k.onnx|28.2MB",
"3dspeaker_speech_campplus_sv_zh-cn_16k-common.onnx|27MB",
"3dspeaker_speech_campplus_sv_zh_en_16k-common_advanced.onnx|27MB",
"3dspeaker_speech_eres2net_base_200k_sv_zh-cn_16k-common.onnx|37.8MB",
"3dspeaker_speech_eres2net_large_sv_zh-cn_3dspeaker_16k.onnx|111MB",
"3dspeaker_speech_eres2net_sv_en_voxceleb_16k.onnx|25.3MB",
"3dspeaker_speech_eres2net_sv_zh-cn_16k-common.onnx|210MB",
"3dspeaker_speech_eres2netv2_sv_zh-cn_16k-common.onnx|68.1MB",
]
wespeaker_embedding_models = [
"wespeaker_en_voxceleb_CAM++.onnx|28MB",
"wespeaker_en_voxceleb_CAM++_LM.onnx|28MB",
"wespeaker_en_voxceleb_resnet152_LM.onnx|76MB",
"wespeaker_en_voxceleb_resnet221_LM.onnx|91MB",
"wespeaker_en_voxceleb_resnet293_LM.onnx|110MB",
"wespeaker_en_voxceleb_resnet34.onnx|26MB",
"wespeaker_en_voxceleb_resnet34_LM.onnx|26MB",
"wespeaker_zh_cnceleb_resnet34.onnx|26MB",
"wespeaker_zh_cnceleb_resnet34_LM.onnx|26MB",
]
embedding2models = {
"3D-Speaker": three_d_speaker_embedding_models,
"NeMo": nemo_speaker_embedding_models,
"WeSpeaker": wespeaker_embedding_models,
}