Tune-A-Video / app.py
kadirnar's picture
Update app.py
f90f982
raw
history blame
4.43 kB
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
import gradio as gr
from bs4 import BeautifulSoup
import requests
def model_url_list():
url_list = []
for i in range(0, 5):
url_list.append(f"https://huggingface.co/models?other=stable-diffusion&p={i}&sort=downloads")
return url_list
def data_scraping(url_list):
model_list = []
for url in url_list:
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
div_class = 'grid gap-5 grid-cols-1 2xl:grid-cols-2'
div = soup.find('div', {'class': div_class})
for a in div.find_all('a', href=True):
model_list.append(a['href'])
return model_list
model_list = data_scraping(model_url_list())
for i in range(len(model_list)):
model_list[i] = model_list[i][1:]
best_model_list = [
"runwayml/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
"prompthero/openjourney",
"dreamlike-art/dreamlike-photoreal-2.0",
"dreamlike-art/dreamlike-diffusion-1.0",
"sd-dreambooth-library/mr-potato-head",
"sd-dreambooth-library/disco-diffusion-style"
]
model_list = best_model_list + model_list
def tune_video_predict(
pipe_id: str,
prompt: str,
video_length: int,
height: int,
width: int,
num_inference_steps: int,
guidance_scale: float,
):
unet = UNet3DConditionModel.from_pretrained("Tune-A-Video-library/a-man-is-surfing", subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pipe_id, unet=unet, torch_dtype=torch.float16).to("cuda")
video = pipe(prompt, video_length=video_length, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).videos
output_path = save_videos_grid(video, save_path='output', path=f"{prompt}.gif")
return output_path
demo_inputs = [
gr.Dropdown(
label="Model",
choices=model_list,
value="CompVis/stable-diffusion-v1-4",
),
gr.inputs.Textbox(
label="Prompt",
default='a flower blooming'
),
gr.inputs.Slider(
label="Video Length",
minimum=1,
maximum=50,
default=8,
step=1,
),
gr.inputs.Slider(
label="Height",
minimum=128,
maximum=1280,
default=416,
step=32,
),
gr.inputs.Slider(
label="Width",
minimum=128,
maximum=1280,
default=416,
step=32,
),
gr.inputs.Slider(
label="Num Inference Steps",
minimum=1,
maximum=100,
default=50,
step=1,
),
gr.inputs.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=100,
default=7.5,
step=0.5,
)
]
demo_outputs = gr.outputs.Video(type="gif", label="Output")
examples = [
["CompVis/stable-diffusion-v1-4", "a panda is surfing", 5, 416, 416, 50, 7.5],
["sd-dreambooth-library/disco-diffusion-style", "ddfusion style on the church", 5, 416, 416, 50, 7.5],
["sd-dreambooth-library/nasa-space-v2-768", "nasa style galaxy moving", 5, 416, 416, 50, 7.5],
["sd-dreambooth-library/mr-potato-head", "sks mr potato head, wearing a pink hat, is surfing.", 5, 416, 416, 50, 7.5],
["sd-dreambooth-library/mr-potato-head", "sks mr potato head is surfing in the forest.", 5, 416, 416, 50, 7.5],
]
description = "This is an application that generates video based on a text prompt. To get started, simply input text. The default model in the dropdown is a generic model that you can generate anything. Alternatively, for more photorealistic generations, you can use other models in the dropdown. These models are Dreambooth models, and they're trained with a specific object name, so make sure you know what the object is called. You can find an example prompt for a dreambooth model in Examples section right below the interface."
title = "Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation"
demo_app = gr.Interface(
fn=tune_video_predict,
inputs=demo_inputs,
outputs=demo_outputs,
examples=examples,
cache_examples=True,
title=title,
theme="huggingface",
description=description
)
demo_app.launch(debug=True, enable_queue=True)