kadirnar commited on
Commit
5425743
·
1 Parent(s): 710ab92

Added demo code of tune_a_video repo.

Browse files
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
2
+ from tuneavideo.models.unet import UNet3DConditionModel
3
+ from tuneavideo.util import save_videos_grid
4
+ import torch
5
+ import gradio as gr
6
+
7
+
8
+ def tune_video_predict(
9
+ prompt: str,
10
+ video_length: int,
11
+ height: int,
12
+ width: int,
13
+ num_inference_steps: int,
14
+ guidance_scale: float,
15
+ ):
16
+ unet = UNet3DConditionModel.from_pretrained('Tune-A-Video-library/a-man-is-surfing', subfolder='unet', torch_dtype=torch.float16).to('cuda')
17
+ pipe = TuneAVideoPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', unet=unet, torch_dtype=torch.float16).to("cuda")
18
+ video = pipe(prompt, video_length=video_length, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).videos
19
+ output_path = save_videos_grid(video, save_path='output', path=f"{prompt}.gif")
20
+ return output_path
21
+
22
+
23
+ demo_inputs = [
24
+ gr.inputs.Textbox(
25
+ label="Prompt",
26
+ default='a panda is surfing'
27
+
28
+ ),
29
+ gr.inputs.Slider(
30
+ label="Video Length",
31
+ minimum=1,
32
+ maximum=50,
33
+ default=4,
34
+ step=1,
35
+ ),
36
+ gr.inputs.Slider(
37
+ label="Height",
38
+ minimum=128,
39
+ maximum=1280,
40
+ default=128,
41
+ step=32,
42
+
43
+ ),
44
+ gr.inputs.Slider(
45
+ label="Width",
46
+ minimum=128,
47
+ maximum=1280,
48
+ default=128,
49
+ step=32,
50
+ ),
51
+ gr.inputs.Slider(
52
+ label="Num Inference Steps",
53
+ minimum=1,
54
+ maximum=100,
55
+ default=10,
56
+ step=1,
57
+ ),
58
+ gr.inputs.Slider(
59
+ label="Guidance Scale",
60
+ minimum=0.0,
61
+ maximum=50,
62
+ default=7.5,
63
+ step=0.5,
64
+ )
65
+ ]
66
+
67
+ demo_outputs = gr.outputs.Video(type="gif", label="Output")
68
+
69
+ examples = [
70
+ ["a panda is surfing", 4, 128, 128, 10, 7.5]
71
+ ]
72
+
73
+
74
+
75
+ demo_app = gr.Interface(
76
+ fn=tune_video_predict,
77
+ inputs=demo_inputs,
78
+ outputs=demo_outputs,
79
+ examples=examples,
80
+ cache_examples=True,
81
+ title="Tune-A-Video",
82
+ theme="huggingface",
83
+ )
84
+
85
+ demo_app.launch(debug=True, enable_queue=True)
86
+
87
+
configs/man-surfing.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
+ output_dir: "./outputs/man-surfing_lr3e-5_seed33"
3
+
4
+ train_data:
5
+ video_path: "data/man-surfing.mp4"
6
+ prompt: "a man is surfing"
7
+ n_sample_frames: 8
8
+ width: 512
9
+ height: 512
10
+ sample_start_idx: 0
11
+ sample_frame_rate: 1
12
+
13
+ validation_data:
14
+ prompts:
15
+ - "a panda is surfing"
16
+ - "a boy, wearing a birthday hat, is surfing"
17
+ - "a raccoon is surfing, cartoon style"
18
+ - "Iron Man is surfing in the desert"
19
+ video_length: 8
20
+ width: 512
21
+ height: 512
22
+ num_inference_steps: 50
23
+ guidance_scale: 7.5
24
+
25
+ learning_rate: 3e-5
26
+ train_batch_size: 1
27
+ max_train_steps: 300
28
+ checkpointing_steps: 1000
29
+ validation_steps: 100
30
+ trainable_modules:
31
+ - "attn1.to_q"
32
+ - "attn2.to_q"
33
+ - "attn_temp"
34
+
35
+ seed: 33
36
+ mixed_precision: fp16
37
+ use_8bit_adam: False
38
+ gradient_checkpointing: True
39
+ enable_xformers_memory_efficient_attention: True
configs/mr-potato-head.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pretrained_model_path: "./checkpoints/mr-potato-head"
2
+ output_dir: "./outputs/mr-potato-head_lr3e-5_seed33"
3
+
4
+ train_data:
5
+ video_path: "data/man-surfing.mp4"
6
+ prompt: "a man is surfing"
7
+ n_sample_frames: 8
8
+ width: 512
9
+ height: 512
10
+ sample_start_idx: 0
11
+ sample_frame_rate: 1
12
+
13
+ validation_data:
14
+ prompts:
15
+ - "sks mr potato head is surfing"
16
+ - "sks mr potato head, wearing a pink hat, is surfing"
17
+ - "sks mr potato head, wearing funny sunglasses, is surfing"
18
+ - "sks mr potato head is surfing in the forest"
19
+ video_length: 8
20
+ width: 512
21
+ height: 512
22
+ num_inference_steps: 50
23
+ guidance_scale: 7.5
24
+
25
+ learning_rate: 3e-5
26
+ train_batch_size: 1
27
+ max_train_steps: 500
28
+ checkpointing_steps: 1000
29
+ validation_steps: 100
30
+ trainable_modules:
31
+ - "attn1.to_q"
32
+ - "attn2.to_q"
33
+ - "attn_temp"
34
+
35
+ seed: 33
36
+ mixed_precision: fp16
37
+ use_8bit_adam: False
38
+ gradient_checkpointing: True
39
+ enable_xformers_memory_efficient_attention: True
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==1.12.1
2
+ torchvision==0.13.1
3
+ diffusers[torch]==0.11.1
4
+ transformers>=4.25.1
5
+ bitsandbytes==0.35.4
6
+ decord==0.6.0
7
+ accelerate
8
+ modelcards
9
+ omegaconf
10
+ einops
11
+ imageio
12
+ ftfy
tuneavideo/data/dataset.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import decord
2
+ decord.bridge.set_bridge('torch')
3
+
4
+ from torch.utils.data import Dataset
5
+ from einops import rearrange
6
+
7
+
8
+ class TuneAVideoDataset(Dataset):
9
+ def __init__(
10
+ self,
11
+ video_path: str,
12
+ prompt: str,
13
+ width: int = 512,
14
+ height: int = 512,
15
+ n_sample_frames: int = 8,
16
+ sample_start_idx: int = 0,
17
+ sample_frame_rate: int = 1,
18
+ ):
19
+ self.video_path = video_path
20
+ self.prompt = prompt
21
+ self.prompt_ids = None
22
+
23
+ self.width = width
24
+ self.height = height
25
+ self.n_sample_frames = n_sample_frames
26
+ self.sample_start_idx = sample_start_idx
27
+ self.sample_frame_rate = sample_frame_rate
28
+
29
+ def __len__(self):
30
+ return 1
31
+
32
+ def __getitem__(self, index):
33
+ # load and sample video frames
34
+ vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
35
+ sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
36
+ video = vr.get_batch(sample_index)
37
+ video = rearrange(video, "f h w c -> f c h w")
38
+
39
+ example = {
40
+ "pixel_values": (video / 127.5 - 1.0),
41
+ "prompt_ids": self.prompt_ids
42
+ }
43
+
44
+ return example
tuneavideo/models/attention.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import Optional
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+
10
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
11
+ from diffusers.modeling_utils import ModelMixin
12
+ from diffusers.utils import BaseOutput
13
+ from diffusers.utils.import_utils import is_xformers_available
14
+ from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
15
+
16
+ from einops import rearrange, repeat
17
+
18
+
19
+ @dataclass
20
+ class Transformer3DModelOutput(BaseOutput):
21
+ sample: torch.FloatTensor
22
+
23
+
24
+ if is_xformers_available():
25
+ import xformers
26
+ import xformers.ops
27
+ else:
28
+ xformers = None
29
+
30
+
31
+ class Transformer3DModel(ModelMixin, ConfigMixin):
32
+ @register_to_config
33
+ def __init__(
34
+ self,
35
+ num_attention_heads: int = 16,
36
+ attention_head_dim: int = 88,
37
+ in_channels: Optional[int] = None,
38
+ num_layers: int = 1,
39
+ dropout: float = 0.0,
40
+ norm_num_groups: int = 32,
41
+ cross_attention_dim: Optional[int] = None,
42
+ attention_bias: bool = False,
43
+ activation_fn: str = "geglu",
44
+ num_embeds_ada_norm: Optional[int] = None,
45
+ use_linear_projection: bool = False,
46
+ only_cross_attention: bool = False,
47
+ upcast_attention: bool = False,
48
+ ):
49
+ super().__init__()
50
+ self.use_linear_projection = use_linear_projection
51
+ self.num_attention_heads = num_attention_heads
52
+ self.attention_head_dim = attention_head_dim
53
+ inner_dim = num_attention_heads * attention_head_dim
54
+
55
+ # Define input layers
56
+ self.in_channels = in_channels
57
+
58
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
59
+ if use_linear_projection:
60
+ self.proj_in = nn.Linear(in_channels, inner_dim)
61
+ else:
62
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
63
+
64
+ # Define transformers blocks
65
+ self.transformer_blocks = nn.ModuleList(
66
+ [
67
+ BasicTransformerBlock(
68
+ inner_dim,
69
+ num_attention_heads,
70
+ attention_head_dim,
71
+ dropout=dropout,
72
+ cross_attention_dim=cross_attention_dim,
73
+ activation_fn=activation_fn,
74
+ num_embeds_ada_norm=num_embeds_ada_norm,
75
+ attention_bias=attention_bias,
76
+ only_cross_attention=only_cross_attention,
77
+ upcast_attention=upcast_attention,
78
+ )
79
+ for d in range(num_layers)
80
+ ]
81
+ )
82
+
83
+ # 4. Define output layers
84
+ if use_linear_projection:
85
+ self.proj_out = nn.Linear(in_channels, inner_dim)
86
+ else:
87
+ self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
88
+
89
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
90
+ # Input
91
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
92
+ video_length = hidden_states.shape[2]
93
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
94
+ encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
95
+
96
+ batch, channel, height, weight = hidden_states.shape
97
+ residual = hidden_states
98
+
99
+ hidden_states = self.norm(hidden_states)
100
+ if not self.use_linear_projection:
101
+ hidden_states = self.proj_in(hidden_states)
102
+ inner_dim = hidden_states.shape[1]
103
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
104
+ else:
105
+ inner_dim = hidden_states.shape[1]
106
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
107
+ hidden_states = self.proj_in(hidden_states)
108
+
109
+ # Blocks
110
+ for block in self.transformer_blocks:
111
+ hidden_states = block(
112
+ hidden_states,
113
+ encoder_hidden_states=encoder_hidden_states,
114
+ timestep=timestep,
115
+ video_length=video_length
116
+ )
117
+
118
+ # Output
119
+ if not self.use_linear_projection:
120
+ hidden_states = (
121
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
122
+ )
123
+ hidden_states = self.proj_out(hidden_states)
124
+ else:
125
+ hidden_states = self.proj_out(hidden_states)
126
+ hidden_states = (
127
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
128
+ )
129
+
130
+ output = hidden_states + residual
131
+
132
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
133
+ if not return_dict:
134
+ return (output,)
135
+
136
+ return Transformer3DModelOutput(sample=output)
137
+
138
+
139
+ class BasicTransformerBlock(nn.Module):
140
+ def __init__(
141
+ self,
142
+ dim: int,
143
+ num_attention_heads: int,
144
+ attention_head_dim: int,
145
+ dropout=0.0,
146
+ cross_attention_dim: Optional[int] = None,
147
+ activation_fn: str = "geglu",
148
+ num_embeds_ada_norm: Optional[int] = None,
149
+ attention_bias: bool = False,
150
+ only_cross_attention: bool = False,
151
+ upcast_attention: bool = False,
152
+ ):
153
+ super().__init__()
154
+ self.only_cross_attention = only_cross_attention
155
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
156
+
157
+ # SC-Attn
158
+ self.attn1 = SparseCausalAttention(
159
+ query_dim=dim,
160
+ heads=num_attention_heads,
161
+ dim_head=attention_head_dim,
162
+ dropout=dropout,
163
+ bias=attention_bias,
164
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
165
+ upcast_attention=upcast_attention,
166
+ )
167
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
168
+
169
+ # Cross-Attn
170
+ if cross_attention_dim is not None:
171
+ self.attn2 = CrossAttention(
172
+ query_dim=dim,
173
+ cross_attention_dim=cross_attention_dim,
174
+ heads=num_attention_heads,
175
+ dim_head=attention_head_dim,
176
+ dropout=dropout,
177
+ bias=attention_bias,
178
+ upcast_attention=upcast_attention,
179
+ )
180
+ else:
181
+ self.attn2 = None
182
+
183
+ if cross_attention_dim is not None:
184
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
185
+ else:
186
+ self.norm2 = None
187
+
188
+ # Feed-forward
189
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
190
+ self.norm3 = nn.LayerNorm(dim)
191
+
192
+ # Temp-Attn
193
+ self.attn_temp = CrossAttention(
194
+ query_dim=dim,
195
+ heads=num_attention_heads,
196
+ dim_head=attention_head_dim,
197
+ dropout=dropout,
198
+ bias=attention_bias,
199
+ upcast_attention=upcast_attention,
200
+ )
201
+ nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
202
+ self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
203
+
204
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
205
+ if not is_xformers_available():
206
+ print("Here is how to install it")
207
+ raise ModuleNotFoundError(
208
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
209
+ " xformers",
210
+ name="xformers",
211
+ )
212
+ elif not torch.cuda.is_available():
213
+ raise ValueError(
214
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
215
+ " available for GPU "
216
+ )
217
+ else:
218
+ try:
219
+ # Make sure we can run the memory efficient attention
220
+ _ = xformers.ops.memory_efficient_attention(
221
+ torch.randn((1, 2, 40), device="cuda"),
222
+ torch.randn((1, 2, 40), device="cuda"),
223
+ torch.randn((1, 2, 40), device="cuda"),
224
+ )
225
+ except Exception as e:
226
+ raise e
227
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
228
+ if self.attn2 is not None:
229
+ self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
230
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
231
+
232
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
233
+ # SparseCausal-Attention
234
+ norm_hidden_states = (
235
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
236
+ )
237
+
238
+ if self.only_cross_attention:
239
+ hidden_states = (
240
+ self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
241
+ )
242
+ else:
243
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
244
+
245
+ if self.attn2 is not None:
246
+ # Cross-Attention
247
+ norm_hidden_states = (
248
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
249
+ )
250
+ hidden_states = (
251
+ self.attn2(
252
+ norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
253
+ )
254
+ + hidden_states
255
+ )
256
+
257
+ # Feed-forward
258
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
259
+
260
+ # Temporal-Attention
261
+ d = hidden_states.shape[1]
262
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
263
+ norm_hidden_states = (
264
+ self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
265
+ )
266
+ hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
267
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
268
+
269
+ return hidden_states
270
+
271
+
272
+ class SparseCausalAttention(CrossAttention):
273
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
274
+ batch_size, sequence_length, _ = hidden_states.shape
275
+
276
+ encoder_hidden_states = encoder_hidden_states
277
+
278
+ if self.group_norm is not None:
279
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
280
+
281
+ query = self.to_q(hidden_states)
282
+ dim = query.shape[-1]
283
+ query = self.reshape_heads_to_batch_dim(query)
284
+
285
+ if self.added_kv_proj_dim is not None:
286
+ raise NotImplementedError
287
+
288
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
289
+ key = self.to_k(encoder_hidden_states)
290
+ value = self.to_v(encoder_hidden_states)
291
+
292
+ former_frame_index = torch.arange(video_length) - 1
293
+ former_frame_index[0] = 0
294
+
295
+ key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
296
+ key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
297
+ key = rearrange(key, "b f d c -> (b f) d c")
298
+
299
+ value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
300
+ value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
301
+ value = rearrange(value, "b f d c -> (b f) d c")
302
+
303
+ key = self.reshape_heads_to_batch_dim(key)
304
+ value = self.reshape_heads_to_batch_dim(value)
305
+
306
+ if attention_mask is not None:
307
+ if attention_mask.shape[-1] != query.shape[1]:
308
+ target_length = query.shape[1]
309
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
310
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
311
+
312
+ # attention, what we cannot get enough of
313
+ if self._use_memory_efficient_attention_xformers:
314
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
315
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
316
+ hidden_states = hidden_states.to(query.dtype)
317
+ else:
318
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
319
+ hidden_states = self._attention(query, key, value, attention_mask)
320
+ else:
321
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
322
+
323
+ # linear proj
324
+ hidden_states = self.to_out[0](hidden_states)
325
+
326
+ # dropout
327
+ hidden_states = self.to_out[1](hidden_states)
328
+ return hidden_states
tuneavideo/models/resnet.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ from einops import rearrange
8
+
9
+
10
+ class InflatedConv3d(nn.Conv2d):
11
+ def forward(self, x):
12
+ video_length = x.shape[2]
13
+
14
+ x = rearrange(x, "b c f h w -> (b f) c h w")
15
+ x = super().forward(x)
16
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
+
18
+ return x
19
+
20
+
21
+ class Upsample3D(nn.Module):
22
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
23
+ super().__init__()
24
+ self.channels = channels
25
+ self.out_channels = out_channels or channels
26
+ self.use_conv = use_conv
27
+ self.use_conv_transpose = use_conv_transpose
28
+ self.name = name
29
+
30
+ conv = None
31
+ if use_conv_transpose:
32
+ raise NotImplementedError
33
+ elif use_conv:
34
+ conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
35
+
36
+ if name == "conv":
37
+ self.conv = conv
38
+ else:
39
+ self.Conv2d_0 = conv
40
+
41
+ def forward(self, hidden_states, output_size=None):
42
+ assert hidden_states.shape[1] == self.channels
43
+
44
+ if self.use_conv_transpose:
45
+ raise NotImplementedError
46
+
47
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
48
+ dtype = hidden_states.dtype
49
+ if dtype == torch.bfloat16:
50
+ hidden_states = hidden_states.to(torch.float32)
51
+
52
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
53
+ if hidden_states.shape[0] >= 64:
54
+ hidden_states = hidden_states.contiguous()
55
+
56
+ # if `output_size` is passed we force the interpolation output
57
+ # size and do not make use of `scale_factor=2`
58
+ if output_size is None:
59
+ hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
60
+ else:
61
+ hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
62
+
63
+ # If the input is bfloat16, we cast back to bfloat16
64
+ if dtype == torch.bfloat16:
65
+ hidden_states = hidden_states.to(dtype)
66
+
67
+ if self.use_conv:
68
+ if self.name == "conv":
69
+ hidden_states = self.conv(hidden_states)
70
+ else:
71
+ hidden_states = self.Conv2d_0(hidden_states)
72
+
73
+ return hidden_states
74
+
75
+
76
+ class Downsample3D(nn.Module):
77
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
78
+ super().__init__()
79
+ self.channels = channels
80
+ self.out_channels = out_channels or channels
81
+ self.use_conv = use_conv
82
+ self.padding = padding
83
+ stride = 2
84
+ self.name = name
85
+
86
+ if use_conv:
87
+ conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
88
+ else:
89
+ raise NotImplementedError
90
+
91
+ if name == "conv":
92
+ self.Conv2d_0 = conv
93
+ self.conv = conv
94
+ elif name == "Conv2d_0":
95
+ self.conv = conv
96
+ else:
97
+ self.conv = conv
98
+
99
+ def forward(self, hidden_states):
100
+ assert hidden_states.shape[1] == self.channels
101
+ if self.use_conv and self.padding == 0:
102
+ raise NotImplementedError
103
+
104
+ assert hidden_states.shape[1] == self.channels
105
+ hidden_states = self.conv(hidden_states)
106
+
107
+ return hidden_states
108
+
109
+
110
+ class ResnetBlock3D(nn.Module):
111
+ def __init__(
112
+ self,
113
+ *,
114
+ in_channels,
115
+ out_channels=None,
116
+ conv_shortcut=False,
117
+ dropout=0.0,
118
+ temb_channels=512,
119
+ groups=32,
120
+ groups_out=None,
121
+ pre_norm=True,
122
+ eps=1e-6,
123
+ non_linearity="swish",
124
+ time_embedding_norm="default",
125
+ output_scale_factor=1.0,
126
+ use_in_shortcut=None,
127
+ ):
128
+ super().__init__()
129
+ self.pre_norm = pre_norm
130
+ self.pre_norm = True
131
+ self.in_channels = in_channels
132
+ out_channels = in_channels if out_channels is None else out_channels
133
+ self.out_channels = out_channels
134
+ self.use_conv_shortcut = conv_shortcut
135
+ self.time_embedding_norm = time_embedding_norm
136
+ self.output_scale_factor = output_scale_factor
137
+
138
+ if groups_out is None:
139
+ groups_out = groups
140
+
141
+ self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
142
+
143
+ self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
144
+
145
+ if temb_channels is not None:
146
+ if self.time_embedding_norm == "default":
147
+ time_emb_proj_out_channels = out_channels
148
+ elif self.time_embedding_norm == "scale_shift":
149
+ time_emb_proj_out_channels = out_channels * 2
150
+ else:
151
+ raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
152
+
153
+ self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
154
+ else:
155
+ self.time_emb_proj = None
156
+
157
+ self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
158
+ self.dropout = torch.nn.Dropout(dropout)
159
+ self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
160
+
161
+ if non_linearity == "swish":
162
+ self.nonlinearity = lambda x: F.silu(x)
163
+ elif non_linearity == "mish":
164
+ self.nonlinearity = Mish()
165
+ elif non_linearity == "silu":
166
+ self.nonlinearity = nn.SiLU()
167
+
168
+ self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
169
+
170
+ self.conv_shortcut = None
171
+ if self.use_in_shortcut:
172
+ self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
173
+
174
+ def forward(self, input_tensor, temb):
175
+ hidden_states = input_tensor
176
+
177
+ hidden_states = self.norm1(hidden_states)
178
+ hidden_states = self.nonlinearity(hidden_states)
179
+
180
+ hidden_states = self.conv1(hidden_states)
181
+
182
+ if temb is not None:
183
+ temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
184
+
185
+ if temb is not None and self.time_embedding_norm == "default":
186
+ hidden_states = hidden_states + temb
187
+
188
+ hidden_states = self.norm2(hidden_states)
189
+
190
+ if temb is not None and self.time_embedding_norm == "scale_shift":
191
+ scale, shift = torch.chunk(temb, 2, dim=1)
192
+ hidden_states = hidden_states * (1 + scale) + shift
193
+
194
+ hidden_states = self.nonlinearity(hidden_states)
195
+
196
+ hidden_states = self.dropout(hidden_states)
197
+ hidden_states = self.conv2(hidden_states)
198
+
199
+ if self.conv_shortcut is not None:
200
+ input_tensor = self.conv_shortcut(input_tensor)
201
+
202
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
203
+
204
+ return output_tensor
205
+
206
+
207
+ class Mish(torch.nn.Module):
208
+ def forward(self, hidden_states):
209
+ return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
tuneavideo/models/unet.py ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import os
7
+ import json
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.utils.checkpoint
12
+
13
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
14
+ from diffusers.modeling_utils import ModelMixin
15
+ from diffusers.utils import BaseOutput, logging
16
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
17
+ from .unet_blocks import (
18
+ CrossAttnDownBlock3D,
19
+ CrossAttnUpBlock3D,
20
+ DownBlock3D,
21
+ UNetMidBlock3DCrossAttn,
22
+ UpBlock3D,
23
+ get_down_block,
24
+ get_up_block,
25
+ )
26
+ from .resnet import InflatedConv3d
27
+
28
+
29
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
+
31
+
32
+ @dataclass
33
+ class UNet3DConditionOutput(BaseOutput):
34
+ sample: torch.FloatTensor
35
+
36
+
37
+ class UNet3DConditionModel(ModelMixin, ConfigMixin):
38
+ _supports_gradient_checkpointing = True
39
+
40
+ @register_to_config
41
+ def __init__(
42
+ self,
43
+ sample_size: Optional[int] = None,
44
+ in_channels: int = 4,
45
+ out_channels: int = 4,
46
+ center_input_sample: bool = False,
47
+ flip_sin_to_cos: bool = True,
48
+ freq_shift: int = 0,
49
+ down_block_types: Tuple[str] = (
50
+ "CrossAttnDownBlock3D",
51
+ "CrossAttnDownBlock3D",
52
+ "CrossAttnDownBlock3D",
53
+ "DownBlock3D",
54
+ ),
55
+ mid_block_type: str = "UNetMidBlock3DCrossAttn",
56
+ up_block_types: Tuple[str] = (
57
+ "UpBlock3D",
58
+ "CrossAttnUpBlock3D",
59
+ "CrossAttnUpBlock3D",
60
+ "CrossAttnUpBlock3D"
61
+ ),
62
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
63
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
64
+ layers_per_block: int = 2,
65
+ downsample_padding: int = 1,
66
+ mid_block_scale_factor: float = 1,
67
+ act_fn: str = "silu",
68
+ norm_num_groups: int = 32,
69
+ norm_eps: float = 1e-5,
70
+ cross_attention_dim: int = 1280,
71
+ attention_head_dim: Union[int, Tuple[int]] = 8,
72
+ dual_cross_attention: bool = False,
73
+ use_linear_projection: bool = False,
74
+ class_embed_type: Optional[str] = None,
75
+ num_class_embeds: Optional[int] = None,
76
+ upcast_attention: bool = False,
77
+ resnet_time_scale_shift: str = "default",
78
+ ):
79
+ super().__init__()
80
+
81
+ self.sample_size = sample_size
82
+ time_embed_dim = block_out_channels[0] * 4
83
+
84
+ # input
85
+ self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
86
+
87
+ # time
88
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
89
+ timestep_input_dim = block_out_channels[0]
90
+
91
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
92
+
93
+ # class embedding
94
+ if class_embed_type is None and num_class_embeds is not None:
95
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
96
+ elif class_embed_type == "timestep":
97
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
98
+ elif class_embed_type == "identity":
99
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
100
+ else:
101
+ self.class_embedding = None
102
+
103
+ self.down_blocks = nn.ModuleList([])
104
+ self.mid_block = None
105
+ self.up_blocks = nn.ModuleList([])
106
+
107
+ if isinstance(only_cross_attention, bool):
108
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
109
+
110
+ if isinstance(attention_head_dim, int):
111
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
112
+
113
+ # down
114
+ output_channel = block_out_channels[0]
115
+ for i, down_block_type in enumerate(down_block_types):
116
+ input_channel = output_channel
117
+ output_channel = block_out_channels[i]
118
+ is_final_block = i == len(block_out_channels) - 1
119
+
120
+ down_block = get_down_block(
121
+ down_block_type,
122
+ num_layers=layers_per_block,
123
+ in_channels=input_channel,
124
+ out_channels=output_channel,
125
+ temb_channels=time_embed_dim,
126
+ add_downsample=not is_final_block,
127
+ resnet_eps=norm_eps,
128
+ resnet_act_fn=act_fn,
129
+ resnet_groups=norm_num_groups,
130
+ cross_attention_dim=cross_attention_dim,
131
+ attn_num_head_channels=attention_head_dim[i],
132
+ downsample_padding=downsample_padding,
133
+ dual_cross_attention=dual_cross_attention,
134
+ use_linear_projection=use_linear_projection,
135
+ only_cross_attention=only_cross_attention[i],
136
+ upcast_attention=upcast_attention,
137
+ resnet_time_scale_shift=resnet_time_scale_shift,
138
+ )
139
+ self.down_blocks.append(down_block)
140
+
141
+ # mid
142
+ if mid_block_type == "UNetMidBlock3DCrossAttn":
143
+ self.mid_block = UNetMidBlock3DCrossAttn(
144
+ in_channels=block_out_channels[-1],
145
+ temb_channels=time_embed_dim,
146
+ resnet_eps=norm_eps,
147
+ resnet_act_fn=act_fn,
148
+ output_scale_factor=mid_block_scale_factor,
149
+ resnet_time_scale_shift=resnet_time_scale_shift,
150
+ cross_attention_dim=cross_attention_dim,
151
+ attn_num_head_channels=attention_head_dim[-1],
152
+ resnet_groups=norm_num_groups,
153
+ dual_cross_attention=dual_cross_attention,
154
+ use_linear_projection=use_linear_projection,
155
+ upcast_attention=upcast_attention,
156
+ )
157
+ else:
158
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
159
+
160
+ # count how many layers upsample the videos
161
+ self.num_upsamplers = 0
162
+
163
+ # up
164
+ reversed_block_out_channels = list(reversed(block_out_channels))
165
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
166
+ only_cross_attention = list(reversed(only_cross_attention))
167
+ output_channel = reversed_block_out_channels[0]
168
+ for i, up_block_type in enumerate(up_block_types):
169
+ is_final_block = i == len(block_out_channels) - 1
170
+
171
+ prev_output_channel = output_channel
172
+ output_channel = reversed_block_out_channels[i]
173
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
174
+
175
+ # add upsample block for all BUT final layer
176
+ if not is_final_block:
177
+ add_upsample = True
178
+ self.num_upsamplers += 1
179
+ else:
180
+ add_upsample = False
181
+
182
+ up_block = get_up_block(
183
+ up_block_type,
184
+ num_layers=layers_per_block + 1,
185
+ in_channels=input_channel,
186
+ out_channels=output_channel,
187
+ prev_output_channel=prev_output_channel,
188
+ temb_channels=time_embed_dim,
189
+ add_upsample=add_upsample,
190
+ resnet_eps=norm_eps,
191
+ resnet_act_fn=act_fn,
192
+ resnet_groups=norm_num_groups,
193
+ cross_attention_dim=cross_attention_dim,
194
+ attn_num_head_channels=reversed_attention_head_dim[i],
195
+ dual_cross_attention=dual_cross_attention,
196
+ use_linear_projection=use_linear_projection,
197
+ only_cross_attention=only_cross_attention[i],
198
+ upcast_attention=upcast_attention,
199
+ resnet_time_scale_shift=resnet_time_scale_shift,
200
+ )
201
+ self.up_blocks.append(up_block)
202
+ prev_output_channel = output_channel
203
+
204
+ # out
205
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
206
+ self.conv_act = nn.SiLU()
207
+ self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
208
+
209
+ def set_attention_slice(self, slice_size):
210
+ r"""
211
+ Enable sliced attention computation.
212
+
213
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
214
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
215
+
216
+ Args:
217
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
218
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
219
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
220
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
221
+ must be a multiple of `slice_size`.
222
+ """
223
+ sliceable_head_dims = []
224
+
225
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
226
+ if hasattr(module, "set_attention_slice"):
227
+ sliceable_head_dims.append(module.sliceable_head_dim)
228
+
229
+ for child in module.children():
230
+ fn_recursive_retrieve_slicable_dims(child)
231
+
232
+ # retrieve number of attention layers
233
+ for module in self.children():
234
+ fn_recursive_retrieve_slicable_dims(module)
235
+
236
+ num_slicable_layers = len(sliceable_head_dims)
237
+
238
+ if slice_size == "auto":
239
+ # half the attention head size is usually a good trade-off between
240
+ # speed and memory
241
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
242
+ elif slice_size == "max":
243
+ # make smallest slice possible
244
+ slice_size = num_slicable_layers * [1]
245
+
246
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
247
+
248
+ if len(slice_size) != len(sliceable_head_dims):
249
+ raise ValueError(
250
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
251
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
252
+ )
253
+
254
+ for i in range(len(slice_size)):
255
+ size = slice_size[i]
256
+ dim = sliceable_head_dims[i]
257
+ if size is not None and size > dim:
258
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
259
+
260
+ # Recursively walk through all the children.
261
+ # Any children which exposes the set_attention_slice method
262
+ # gets the message
263
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
264
+ if hasattr(module, "set_attention_slice"):
265
+ module.set_attention_slice(slice_size.pop())
266
+
267
+ for child in module.children():
268
+ fn_recursive_set_attention_slice(child, slice_size)
269
+
270
+ reversed_slice_size = list(reversed(slice_size))
271
+ for module in self.children():
272
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
273
+
274
+ def _set_gradient_checkpointing(self, module, value=False):
275
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
276
+ module.gradient_checkpointing = value
277
+
278
+ def forward(
279
+ self,
280
+ sample: torch.FloatTensor,
281
+ timestep: Union[torch.Tensor, float, int],
282
+ encoder_hidden_states: torch.Tensor,
283
+ class_labels: Optional[torch.Tensor] = None,
284
+ attention_mask: Optional[torch.Tensor] = None,
285
+ return_dict: bool = True,
286
+ ) -> Union[UNet3DConditionOutput, Tuple]:
287
+ r"""
288
+ Args:
289
+ sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
290
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
291
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
292
+ return_dict (`bool`, *optional*, defaults to `True`):
293
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
294
+
295
+ Returns:
296
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
297
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
298
+ returning a tuple, the first element is the sample tensor.
299
+ """
300
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
301
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
302
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
303
+ # on the fly if necessary.
304
+ default_overall_up_factor = 2**self.num_upsamplers
305
+
306
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
307
+ forward_upsample_size = False
308
+ upsample_size = None
309
+
310
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
311
+ logger.info("Forward upsample size to force interpolation output size.")
312
+ forward_upsample_size = True
313
+
314
+ # prepare attention_mask
315
+ if attention_mask is not None:
316
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
317
+ attention_mask = attention_mask.unsqueeze(1)
318
+
319
+ # center input if necessary
320
+ if self.config.center_input_sample:
321
+ sample = 2 * sample - 1.0
322
+
323
+ # time
324
+ timesteps = timestep
325
+ if not torch.is_tensor(timesteps):
326
+ # This would be a good case for the `match` statement (Python 3.10+)
327
+ is_mps = sample.device.type == "mps"
328
+ if isinstance(timestep, float):
329
+ dtype = torch.float32 if is_mps else torch.float64
330
+ else:
331
+ dtype = torch.int32 if is_mps else torch.int64
332
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
333
+ elif len(timesteps.shape) == 0:
334
+ timesteps = timesteps[None].to(sample.device)
335
+
336
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
337
+ timesteps = timesteps.expand(sample.shape[0])
338
+
339
+ t_emb = self.time_proj(timesteps)
340
+
341
+ # timesteps does not contain any weights and will always return f32 tensors
342
+ # but time_embedding might actually be running in fp16. so we need to cast here.
343
+ # there might be better ways to encapsulate this.
344
+ t_emb = t_emb.to(dtype=self.dtype)
345
+ emb = self.time_embedding(t_emb)
346
+
347
+ if self.class_embedding is not None:
348
+ if class_labels is None:
349
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
350
+
351
+ if self.config.class_embed_type == "timestep":
352
+ class_labels = self.time_proj(class_labels)
353
+
354
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
355
+ emb = emb + class_emb
356
+
357
+ # pre-process
358
+ sample = self.conv_in(sample)
359
+
360
+ # down
361
+ down_block_res_samples = (sample,)
362
+ for downsample_block in self.down_blocks:
363
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
364
+ sample, res_samples = downsample_block(
365
+ hidden_states=sample,
366
+ temb=emb,
367
+ encoder_hidden_states=encoder_hidden_states,
368
+ attention_mask=attention_mask,
369
+ )
370
+ else:
371
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
372
+
373
+ down_block_res_samples += res_samples
374
+
375
+ # mid
376
+ sample = self.mid_block(
377
+ sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
378
+ )
379
+
380
+ # up
381
+ for i, upsample_block in enumerate(self.up_blocks):
382
+ is_final_block = i == len(self.up_blocks) - 1
383
+
384
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
385
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
386
+
387
+ # if we have not reached the final block and need to forward the
388
+ # upsample size, we do it here
389
+ if not is_final_block and forward_upsample_size:
390
+ upsample_size = down_block_res_samples[-1].shape[2:]
391
+
392
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
393
+ sample = upsample_block(
394
+ hidden_states=sample,
395
+ temb=emb,
396
+ res_hidden_states_tuple=res_samples,
397
+ encoder_hidden_states=encoder_hidden_states,
398
+ upsample_size=upsample_size,
399
+ attention_mask=attention_mask,
400
+ )
401
+ else:
402
+ sample = upsample_block(
403
+ hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
404
+ )
405
+ # post-process
406
+ sample = self.conv_norm_out(sample)
407
+ sample = self.conv_act(sample)
408
+ sample = self.conv_out(sample)
409
+
410
+ if not return_dict:
411
+ return (sample,)
412
+
413
+ return UNet3DConditionOutput(sample=sample)
414
+
415
+ @classmethod
416
+ def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
417
+ if subfolder is not None:
418
+ pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
419
+
420
+ config_file = os.path.join(pretrained_model_path, 'config.json')
421
+ if not os.path.isfile(config_file):
422
+ raise RuntimeError(f"{config_file} does not exist")
423
+ with open(config_file, "r") as f:
424
+ config = json.load(f)
425
+ config["_class_name"] = cls.__name__
426
+ config["down_block_types"] = [
427
+ "CrossAttnDownBlock3D",
428
+ "CrossAttnDownBlock3D",
429
+ "CrossAttnDownBlock3D",
430
+ "DownBlock3D"
431
+ ]
432
+ config["up_block_types"] = [
433
+ "UpBlock3D",
434
+ "CrossAttnUpBlock3D",
435
+ "CrossAttnUpBlock3D",
436
+ "CrossAttnUpBlock3D"
437
+ ]
438
+
439
+ from diffusers.utils import WEIGHTS_NAME
440
+ model = cls.from_config(config)
441
+ model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
442
+ if not os.path.isfile(model_file):
443
+ raise RuntimeError(f"{model_file} does not exist")
444
+ state_dict = torch.load(model_file, map_location="cpu")
445
+ for k, v in model.state_dict().items():
446
+ if '_temp.' in k:
447
+ state_dict.update({k: v})
448
+ model.load_state_dict(state_dict)
449
+
450
+ return model
tuneavideo/models/unet_blocks.py ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from .attention import Transformer3DModel
7
+ from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
+
9
+
10
+ def get_down_block(
11
+ down_block_type,
12
+ num_layers,
13
+ in_channels,
14
+ out_channels,
15
+ temb_channels,
16
+ add_downsample,
17
+ resnet_eps,
18
+ resnet_act_fn,
19
+ attn_num_head_channels,
20
+ resnet_groups=None,
21
+ cross_attention_dim=None,
22
+ downsample_padding=None,
23
+ dual_cross_attention=False,
24
+ use_linear_projection=False,
25
+ only_cross_attention=False,
26
+ upcast_attention=False,
27
+ resnet_time_scale_shift="default",
28
+ ):
29
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
30
+ if down_block_type == "DownBlock3D":
31
+ return DownBlock3D(
32
+ num_layers=num_layers,
33
+ in_channels=in_channels,
34
+ out_channels=out_channels,
35
+ temb_channels=temb_channels,
36
+ add_downsample=add_downsample,
37
+ resnet_eps=resnet_eps,
38
+ resnet_act_fn=resnet_act_fn,
39
+ resnet_groups=resnet_groups,
40
+ downsample_padding=downsample_padding,
41
+ resnet_time_scale_shift=resnet_time_scale_shift,
42
+ )
43
+ elif down_block_type == "CrossAttnDownBlock3D":
44
+ if cross_attention_dim is None:
45
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
46
+ return CrossAttnDownBlock3D(
47
+ num_layers=num_layers,
48
+ in_channels=in_channels,
49
+ out_channels=out_channels,
50
+ temb_channels=temb_channels,
51
+ add_downsample=add_downsample,
52
+ resnet_eps=resnet_eps,
53
+ resnet_act_fn=resnet_act_fn,
54
+ resnet_groups=resnet_groups,
55
+ downsample_padding=downsample_padding,
56
+ cross_attention_dim=cross_attention_dim,
57
+ attn_num_head_channels=attn_num_head_channels,
58
+ dual_cross_attention=dual_cross_attention,
59
+ use_linear_projection=use_linear_projection,
60
+ only_cross_attention=only_cross_attention,
61
+ upcast_attention=upcast_attention,
62
+ resnet_time_scale_shift=resnet_time_scale_shift,
63
+ )
64
+ raise ValueError(f"{down_block_type} does not exist.")
65
+
66
+
67
+ def get_up_block(
68
+ up_block_type,
69
+ num_layers,
70
+ in_channels,
71
+ out_channels,
72
+ prev_output_channel,
73
+ temb_channels,
74
+ add_upsample,
75
+ resnet_eps,
76
+ resnet_act_fn,
77
+ attn_num_head_channels,
78
+ resnet_groups=None,
79
+ cross_attention_dim=None,
80
+ dual_cross_attention=False,
81
+ use_linear_projection=False,
82
+ only_cross_attention=False,
83
+ upcast_attention=False,
84
+ resnet_time_scale_shift="default",
85
+ ):
86
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
87
+ if up_block_type == "UpBlock3D":
88
+ return UpBlock3D(
89
+ num_layers=num_layers,
90
+ in_channels=in_channels,
91
+ out_channels=out_channels,
92
+ prev_output_channel=prev_output_channel,
93
+ temb_channels=temb_channels,
94
+ add_upsample=add_upsample,
95
+ resnet_eps=resnet_eps,
96
+ resnet_act_fn=resnet_act_fn,
97
+ resnet_groups=resnet_groups,
98
+ resnet_time_scale_shift=resnet_time_scale_shift,
99
+ )
100
+ elif up_block_type == "CrossAttnUpBlock3D":
101
+ if cross_attention_dim is None:
102
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
103
+ return CrossAttnUpBlock3D(
104
+ num_layers=num_layers,
105
+ in_channels=in_channels,
106
+ out_channels=out_channels,
107
+ prev_output_channel=prev_output_channel,
108
+ temb_channels=temb_channels,
109
+ add_upsample=add_upsample,
110
+ resnet_eps=resnet_eps,
111
+ resnet_act_fn=resnet_act_fn,
112
+ resnet_groups=resnet_groups,
113
+ cross_attention_dim=cross_attention_dim,
114
+ attn_num_head_channels=attn_num_head_channels,
115
+ dual_cross_attention=dual_cross_attention,
116
+ use_linear_projection=use_linear_projection,
117
+ only_cross_attention=only_cross_attention,
118
+ upcast_attention=upcast_attention,
119
+ resnet_time_scale_shift=resnet_time_scale_shift,
120
+ )
121
+ raise ValueError(f"{up_block_type} does not exist.")
122
+
123
+
124
+ class UNetMidBlock3DCrossAttn(nn.Module):
125
+ def __init__(
126
+ self,
127
+ in_channels: int,
128
+ temb_channels: int,
129
+ dropout: float = 0.0,
130
+ num_layers: int = 1,
131
+ resnet_eps: float = 1e-6,
132
+ resnet_time_scale_shift: str = "default",
133
+ resnet_act_fn: str = "swish",
134
+ resnet_groups: int = 32,
135
+ resnet_pre_norm: bool = True,
136
+ attn_num_head_channels=1,
137
+ output_scale_factor=1.0,
138
+ cross_attention_dim=1280,
139
+ dual_cross_attention=False,
140
+ use_linear_projection=False,
141
+ upcast_attention=False,
142
+ ):
143
+ super().__init__()
144
+
145
+ self.has_cross_attention = True
146
+ self.attn_num_head_channels = attn_num_head_channels
147
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
148
+
149
+ # there is always at least one resnet
150
+ resnets = [
151
+ ResnetBlock3D(
152
+ in_channels=in_channels,
153
+ out_channels=in_channels,
154
+ temb_channels=temb_channels,
155
+ eps=resnet_eps,
156
+ groups=resnet_groups,
157
+ dropout=dropout,
158
+ time_embedding_norm=resnet_time_scale_shift,
159
+ non_linearity=resnet_act_fn,
160
+ output_scale_factor=output_scale_factor,
161
+ pre_norm=resnet_pre_norm,
162
+ )
163
+ ]
164
+ attentions = []
165
+
166
+ for _ in range(num_layers):
167
+ if dual_cross_attention:
168
+ raise NotImplementedError
169
+ attentions.append(
170
+ Transformer3DModel(
171
+ attn_num_head_channels,
172
+ in_channels // attn_num_head_channels,
173
+ in_channels=in_channels,
174
+ num_layers=1,
175
+ cross_attention_dim=cross_attention_dim,
176
+ norm_num_groups=resnet_groups,
177
+ use_linear_projection=use_linear_projection,
178
+ upcast_attention=upcast_attention,
179
+ )
180
+ )
181
+ resnets.append(
182
+ ResnetBlock3D(
183
+ in_channels=in_channels,
184
+ out_channels=in_channels,
185
+ temb_channels=temb_channels,
186
+ eps=resnet_eps,
187
+ groups=resnet_groups,
188
+ dropout=dropout,
189
+ time_embedding_norm=resnet_time_scale_shift,
190
+ non_linearity=resnet_act_fn,
191
+ output_scale_factor=output_scale_factor,
192
+ pre_norm=resnet_pre_norm,
193
+ )
194
+ )
195
+
196
+ self.attentions = nn.ModuleList(attentions)
197
+ self.resnets = nn.ModuleList(resnets)
198
+
199
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
200
+ hidden_states = self.resnets[0](hidden_states, temb)
201
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
202
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
203
+ hidden_states = resnet(hidden_states, temb)
204
+
205
+ return hidden_states
206
+
207
+
208
+ class CrossAttnDownBlock3D(nn.Module):
209
+ def __init__(
210
+ self,
211
+ in_channels: int,
212
+ out_channels: int,
213
+ temb_channels: int,
214
+ dropout: float = 0.0,
215
+ num_layers: int = 1,
216
+ resnet_eps: float = 1e-6,
217
+ resnet_time_scale_shift: str = "default",
218
+ resnet_act_fn: str = "swish",
219
+ resnet_groups: int = 32,
220
+ resnet_pre_norm: bool = True,
221
+ attn_num_head_channels=1,
222
+ cross_attention_dim=1280,
223
+ output_scale_factor=1.0,
224
+ downsample_padding=1,
225
+ add_downsample=True,
226
+ dual_cross_attention=False,
227
+ use_linear_projection=False,
228
+ only_cross_attention=False,
229
+ upcast_attention=False,
230
+ ):
231
+ super().__init__()
232
+ resnets = []
233
+ attentions = []
234
+
235
+ self.has_cross_attention = True
236
+ self.attn_num_head_channels = attn_num_head_channels
237
+
238
+ for i in range(num_layers):
239
+ in_channels = in_channels if i == 0 else out_channels
240
+ resnets.append(
241
+ ResnetBlock3D(
242
+ in_channels=in_channels,
243
+ out_channels=out_channels,
244
+ temb_channels=temb_channels,
245
+ eps=resnet_eps,
246
+ groups=resnet_groups,
247
+ dropout=dropout,
248
+ time_embedding_norm=resnet_time_scale_shift,
249
+ non_linearity=resnet_act_fn,
250
+ output_scale_factor=output_scale_factor,
251
+ pre_norm=resnet_pre_norm,
252
+ )
253
+ )
254
+ if dual_cross_attention:
255
+ raise NotImplementedError
256
+ attentions.append(
257
+ Transformer3DModel(
258
+ attn_num_head_channels,
259
+ out_channels // attn_num_head_channels,
260
+ in_channels=out_channels,
261
+ num_layers=1,
262
+ cross_attention_dim=cross_attention_dim,
263
+ norm_num_groups=resnet_groups,
264
+ use_linear_projection=use_linear_projection,
265
+ only_cross_attention=only_cross_attention,
266
+ upcast_attention=upcast_attention,
267
+ )
268
+ )
269
+ self.attentions = nn.ModuleList(attentions)
270
+ self.resnets = nn.ModuleList(resnets)
271
+
272
+ if add_downsample:
273
+ self.downsamplers = nn.ModuleList(
274
+ [
275
+ Downsample3D(
276
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
277
+ )
278
+ ]
279
+ )
280
+ else:
281
+ self.downsamplers = None
282
+
283
+ self.gradient_checkpointing = False
284
+
285
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
286
+ output_states = ()
287
+
288
+ for resnet, attn in zip(self.resnets, self.attentions):
289
+ if self.training and self.gradient_checkpointing:
290
+
291
+ def create_custom_forward(module, return_dict=None):
292
+ def custom_forward(*inputs):
293
+ if return_dict is not None:
294
+ return module(*inputs, return_dict=return_dict)
295
+ else:
296
+ return module(*inputs)
297
+
298
+ return custom_forward
299
+
300
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
301
+ hidden_states = torch.utils.checkpoint.checkpoint(
302
+ create_custom_forward(attn, return_dict=False),
303
+ hidden_states,
304
+ encoder_hidden_states,
305
+ )[0]
306
+ else:
307
+ hidden_states = resnet(hidden_states, temb)
308
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
309
+
310
+ output_states += (hidden_states,)
311
+
312
+ if self.downsamplers is not None:
313
+ for downsampler in self.downsamplers:
314
+ hidden_states = downsampler(hidden_states)
315
+
316
+ output_states += (hidden_states,)
317
+
318
+ return hidden_states, output_states
319
+
320
+
321
+ class DownBlock3D(nn.Module):
322
+ def __init__(
323
+ self,
324
+ in_channels: int,
325
+ out_channels: int,
326
+ temb_channels: int,
327
+ dropout: float = 0.0,
328
+ num_layers: int = 1,
329
+ resnet_eps: float = 1e-6,
330
+ resnet_time_scale_shift: str = "default",
331
+ resnet_act_fn: str = "swish",
332
+ resnet_groups: int = 32,
333
+ resnet_pre_norm: bool = True,
334
+ output_scale_factor=1.0,
335
+ add_downsample=True,
336
+ downsample_padding=1,
337
+ ):
338
+ super().__init__()
339
+ resnets = []
340
+
341
+ for i in range(num_layers):
342
+ in_channels = in_channels if i == 0 else out_channels
343
+ resnets.append(
344
+ ResnetBlock3D(
345
+ in_channels=in_channels,
346
+ out_channels=out_channels,
347
+ temb_channels=temb_channels,
348
+ eps=resnet_eps,
349
+ groups=resnet_groups,
350
+ dropout=dropout,
351
+ time_embedding_norm=resnet_time_scale_shift,
352
+ non_linearity=resnet_act_fn,
353
+ output_scale_factor=output_scale_factor,
354
+ pre_norm=resnet_pre_norm,
355
+ )
356
+ )
357
+
358
+ self.resnets = nn.ModuleList(resnets)
359
+
360
+ if add_downsample:
361
+ self.downsamplers = nn.ModuleList(
362
+ [
363
+ Downsample3D(
364
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
365
+ )
366
+ ]
367
+ )
368
+ else:
369
+ self.downsamplers = None
370
+
371
+ self.gradient_checkpointing = False
372
+
373
+ def forward(self, hidden_states, temb=None):
374
+ output_states = ()
375
+
376
+ for resnet in self.resnets:
377
+ if self.training and self.gradient_checkpointing:
378
+
379
+ def create_custom_forward(module):
380
+ def custom_forward(*inputs):
381
+ return module(*inputs)
382
+
383
+ return custom_forward
384
+
385
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
386
+ else:
387
+ hidden_states = resnet(hidden_states, temb)
388
+
389
+ output_states += (hidden_states,)
390
+
391
+ if self.downsamplers is not None:
392
+ for downsampler in self.downsamplers:
393
+ hidden_states = downsampler(hidden_states)
394
+
395
+ output_states += (hidden_states,)
396
+
397
+ return hidden_states, output_states
398
+
399
+
400
+ class CrossAttnUpBlock3D(nn.Module):
401
+ def __init__(
402
+ self,
403
+ in_channels: int,
404
+ out_channels: int,
405
+ prev_output_channel: int,
406
+ temb_channels: int,
407
+ dropout: float = 0.0,
408
+ num_layers: int = 1,
409
+ resnet_eps: float = 1e-6,
410
+ resnet_time_scale_shift: str = "default",
411
+ resnet_act_fn: str = "swish",
412
+ resnet_groups: int = 32,
413
+ resnet_pre_norm: bool = True,
414
+ attn_num_head_channels=1,
415
+ cross_attention_dim=1280,
416
+ output_scale_factor=1.0,
417
+ add_upsample=True,
418
+ dual_cross_attention=False,
419
+ use_linear_projection=False,
420
+ only_cross_attention=False,
421
+ upcast_attention=False,
422
+ ):
423
+ super().__init__()
424
+ resnets = []
425
+ attentions = []
426
+
427
+ self.has_cross_attention = True
428
+ self.attn_num_head_channels = attn_num_head_channels
429
+
430
+ for i in range(num_layers):
431
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
432
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
433
+
434
+ resnets.append(
435
+ ResnetBlock3D(
436
+ in_channels=resnet_in_channels + res_skip_channels,
437
+ out_channels=out_channels,
438
+ temb_channels=temb_channels,
439
+ eps=resnet_eps,
440
+ groups=resnet_groups,
441
+ dropout=dropout,
442
+ time_embedding_norm=resnet_time_scale_shift,
443
+ non_linearity=resnet_act_fn,
444
+ output_scale_factor=output_scale_factor,
445
+ pre_norm=resnet_pre_norm,
446
+ )
447
+ )
448
+ if dual_cross_attention:
449
+ raise NotImplementedError
450
+ attentions.append(
451
+ Transformer3DModel(
452
+ attn_num_head_channels,
453
+ out_channels // attn_num_head_channels,
454
+ in_channels=out_channels,
455
+ num_layers=1,
456
+ cross_attention_dim=cross_attention_dim,
457
+ norm_num_groups=resnet_groups,
458
+ use_linear_projection=use_linear_projection,
459
+ only_cross_attention=only_cross_attention,
460
+ upcast_attention=upcast_attention,
461
+ )
462
+ )
463
+
464
+ self.attentions = nn.ModuleList(attentions)
465
+ self.resnets = nn.ModuleList(resnets)
466
+
467
+ if add_upsample:
468
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
469
+ else:
470
+ self.upsamplers = None
471
+
472
+ self.gradient_checkpointing = False
473
+
474
+ def forward(
475
+ self,
476
+ hidden_states,
477
+ res_hidden_states_tuple,
478
+ temb=None,
479
+ encoder_hidden_states=None,
480
+ upsample_size=None,
481
+ attention_mask=None,
482
+ ):
483
+ for resnet, attn in zip(self.resnets, self.attentions):
484
+ # pop res hidden states
485
+ res_hidden_states = res_hidden_states_tuple[-1]
486
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
487
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
488
+
489
+ if self.training and self.gradient_checkpointing:
490
+
491
+ def create_custom_forward(module, return_dict=None):
492
+ def custom_forward(*inputs):
493
+ if return_dict is not None:
494
+ return module(*inputs, return_dict=return_dict)
495
+ else:
496
+ return module(*inputs)
497
+
498
+ return custom_forward
499
+
500
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
501
+ hidden_states = torch.utils.checkpoint.checkpoint(
502
+ create_custom_forward(attn, return_dict=False),
503
+ hidden_states,
504
+ encoder_hidden_states,
505
+ )[0]
506
+ else:
507
+ hidden_states = resnet(hidden_states, temb)
508
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
509
+
510
+ if self.upsamplers is not None:
511
+ for upsampler in self.upsamplers:
512
+ hidden_states = upsampler(hidden_states, upsample_size)
513
+
514
+ return hidden_states
515
+
516
+
517
+ class UpBlock3D(nn.Module):
518
+ def __init__(
519
+ self,
520
+ in_channels: int,
521
+ prev_output_channel: int,
522
+ out_channels: int,
523
+ temb_channels: int,
524
+ dropout: float = 0.0,
525
+ num_layers: int = 1,
526
+ resnet_eps: float = 1e-6,
527
+ resnet_time_scale_shift: str = "default",
528
+ resnet_act_fn: str = "swish",
529
+ resnet_groups: int = 32,
530
+ resnet_pre_norm: bool = True,
531
+ output_scale_factor=1.0,
532
+ add_upsample=True,
533
+ ):
534
+ super().__init__()
535
+ resnets = []
536
+
537
+ for i in range(num_layers):
538
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
539
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
540
+
541
+ resnets.append(
542
+ ResnetBlock3D(
543
+ in_channels=resnet_in_channels + res_skip_channels,
544
+ out_channels=out_channels,
545
+ temb_channels=temb_channels,
546
+ eps=resnet_eps,
547
+ groups=resnet_groups,
548
+ dropout=dropout,
549
+ time_embedding_norm=resnet_time_scale_shift,
550
+ non_linearity=resnet_act_fn,
551
+ output_scale_factor=output_scale_factor,
552
+ pre_norm=resnet_pre_norm,
553
+ )
554
+ )
555
+
556
+ self.resnets = nn.ModuleList(resnets)
557
+
558
+ if add_upsample:
559
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
560
+ else:
561
+ self.upsamplers = None
562
+
563
+ self.gradient_checkpointing = False
564
+
565
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
566
+ for resnet in self.resnets:
567
+ # pop res hidden states
568
+ res_hidden_states = res_hidden_states_tuple[-1]
569
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
570
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
571
+
572
+ if self.training and self.gradient_checkpointing:
573
+
574
+ def create_custom_forward(module):
575
+ def custom_forward(*inputs):
576
+ return module(*inputs)
577
+
578
+ return custom_forward
579
+
580
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
581
+ else:
582
+ hidden_states = resnet(hidden_states, temb)
583
+
584
+ if self.upsamplers is not None:
585
+ for upsampler in self.upsamplers:
586
+ hidden_states = upsampler(hidden_states, upsample_size)
587
+
588
+ return hidden_states
tuneavideo/pipelines/pipeline_tuneavideo.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
2
+
3
+ import inspect
4
+ from typing import Callable, List, Optional, Union
5
+ from dataclasses import dataclass
6
+
7
+ import numpy as np
8
+ import torch
9
+
10
+ from diffusers.utils import is_accelerate_available
11
+ from packaging import version
12
+ from transformers import CLIPTextModel, CLIPTokenizer
13
+
14
+ from diffusers.configuration_utils import FrozenDict
15
+ from diffusers.models import AutoencoderKL
16
+ from diffusers.pipeline_utils import DiffusionPipeline
17
+ from diffusers.schedulers import (
18
+ DDIMScheduler,
19
+ DPMSolverMultistepScheduler,
20
+ EulerAncestralDiscreteScheduler,
21
+ EulerDiscreteScheduler,
22
+ LMSDiscreteScheduler,
23
+ PNDMScheduler,
24
+ )
25
+ from diffusers.utils import deprecate, logging, BaseOutput
26
+
27
+ from einops import rearrange
28
+
29
+ from ..models.unet import UNet3DConditionModel
30
+
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+
35
+ @dataclass
36
+ class TuneAVideoPipelineOutput(BaseOutput):
37
+ videos: Union[torch.Tensor, np.ndarray]
38
+
39
+
40
+ class TuneAVideoPipeline(DiffusionPipeline):
41
+ _optional_components = []
42
+
43
+ def __init__(
44
+ self,
45
+ vae: AutoencoderKL,
46
+ text_encoder: CLIPTextModel,
47
+ tokenizer: CLIPTokenizer,
48
+ unet: UNet3DConditionModel,
49
+ scheduler: Union[
50
+ DDIMScheduler,
51
+ PNDMScheduler,
52
+ LMSDiscreteScheduler,
53
+ EulerDiscreteScheduler,
54
+ EulerAncestralDiscreteScheduler,
55
+ DPMSolverMultistepScheduler,
56
+ ],
57
+ ):
58
+ super().__init__()
59
+
60
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
+ deprecation_message = (
62
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
63
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
65
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
66
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
+ " file"
68
+ )
69
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
+ new_config = dict(scheduler.config)
71
+ new_config["steps_offset"] = 1
72
+ scheduler._internal_dict = FrozenDict(new_config)
73
+
74
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
75
+ deprecation_message = (
76
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
77
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
78
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
79
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
80
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
81
+ )
82
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
83
+ new_config = dict(scheduler.config)
84
+ new_config["clip_sample"] = False
85
+ scheduler._internal_dict = FrozenDict(new_config)
86
+
87
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
88
+ version.parse(unet.config._diffusers_version).base_version
89
+ ) < version.parse("0.9.0.dev0")
90
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
91
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
92
+ deprecation_message = (
93
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
94
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
95
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
96
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
97
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
98
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
99
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
100
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
101
+ " the `unet/config.json` file"
102
+ )
103
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
104
+ new_config = dict(unet.config)
105
+ new_config["sample_size"] = 64
106
+ unet._internal_dict = FrozenDict(new_config)
107
+
108
+ self.register_modules(
109
+ vae=vae,
110
+ text_encoder=text_encoder,
111
+ tokenizer=tokenizer,
112
+ unet=unet,
113
+ scheduler=scheduler,
114
+ )
115
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
116
+
117
+ def enable_vae_slicing(self):
118
+ self.vae.enable_slicing()
119
+
120
+ def disable_vae_slicing(self):
121
+ self.vae.disable_slicing()
122
+
123
+ def enable_sequential_cpu_offload(self, gpu_id=0):
124
+ if is_accelerate_available():
125
+ from accelerate import cpu_offload
126
+ else:
127
+ raise ImportError("Please install accelerate via `pip install accelerate`")
128
+
129
+ device = torch.device(f"cuda:{gpu_id}")
130
+
131
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
132
+ if cpu_offloaded_model is not None:
133
+ cpu_offload(cpu_offloaded_model, device)
134
+
135
+
136
+ @property
137
+ def _execution_device(self):
138
+ if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
139
+ return self.device
140
+ for module in self.unet.modules():
141
+ if (
142
+ hasattr(module, "_hf_hook")
143
+ and hasattr(module._hf_hook, "execution_device")
144
+ and module._hf_hook.execution_device is not None
145
+ ):
146
+ return torch.device(module._hf_hook.execution_device)
147
+ return self.device
148
+
149
+ def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
150
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
151
+
152
+ text_inputs = self.tokenizer(
153
+ prompt,
154
+ padding="max_length",
155
+ max_length=self.tokenizer.model_max_length,
156
+ truncation=True,
157
+ return_tensors="pt",
158
+ )
159
+ text_input_ids = text_inputs.input_ids
160
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
161
+
162
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
163
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
164
+ logger.warning(
165
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
166
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
167
+ )
168
+
169
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
170
+ attention_mask = text_inputs.attention_mask.to(device)
171
+ else:
172
+ attention_mask = None
173
+
174
+ text_embeddings = self.text_encoder(
175
+ text_input_ids.to(device),
176
+ attention_mask=attention_mask,
177
+ )
178
+ text_embeddings = text_embeddings[0]
179
+
180
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
181
+ bs_embed, seq_len, _ = text_embeddings.shape
182
+ text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
183
+ text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
184
+
185
+ # get unconditional embeddings for classifier free guidance
186
+ if do_classifier_free_guidance:
187
+ uncond_tokens: List[str]
188
+ if negative_prompt is None:
189
+ uncond_tokens = [""] * batch_size
190
+ elif type(prompt) is not type(negative_prompt):
191
+ raise TypeError(
192
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
193
+ f" {type(prompt)}."
194
+ )
195
+ elif isinstance(negative_prompt, str):
196
+ uncond_tokens = [negative_prompt]
197
+ elif batch_size != len(negative_prompt):
198
+ raise ValueError(
199
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
200
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
201
+ " the batch size of `prompt`."
202
+ )
203
+ else:
204
+ uncond_tokens = negative_prompt
205
+
206
+ max_length = text_input_ids.shape[-1]
207
+ uncond_input = self.tokenizer(
208
+ uncond_tokens,
209
+ padding="max_length",
210
+ max_length=max_length,
211
+ truncation=True,
212
+ return_tensors="pt",
213
+ )
214
+
215
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
216
+ attention_mask = uncond_input.attention_mask.to(device)
217
+ else:
218
+ attention_mask = None
219
+
220
+ uncond_embeddings = self.text_encoder(
221
+ uncond_input.input_ids.to(device),
222
+ attention_mask=attention_mask,
223
+ )
224
+ uncond_embeddings = uncond_embeddings[0]
225
+
226
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
227
+ seq_len = uncond_embeddings.shape[1]
228
+ uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
229
+ uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
230
+
231
+ # For classifier free guidance, we need to do two forward passes.
232
+ # Here we concatenate the unconditional and text embeddings into a single batch
233
+ # to avoid doing two forward passes
234
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
235
+
236
+ return text_embeddings
237
+
238
+ def decode_latents(self, latents):
239
+ video_length = latents.shape[2]
240
+ latents = 1 / 0.18215 * latents
241
+ latents = rearrange(latents, "b c f h w -> (b f) c h w")
242
+ video = self.vae.decode(latents).sample
243
+ video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
244
+ video = (video / 2 + 0.5).clamp(0, 1)
245
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
246
+ video = video.cpu().float().numpy()
247
+ return video
248
+
249
+ def prepare_extra_step_kwargs(self, generator, eta):
250
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
251
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
252
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
253
+ # and should be between [0, 1]
254
+
255
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
256
+ extra_step_kwargs = {}
257
+ if accepts_eta:
258
+ extra_step_kwargs["eta"] = eta
259
+
260
+ # check if the scheduler accepts generator
261
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
262
+ if accepts_generator:
263
+ extra_step_kwargs["generator"] = generator
264
+ return extra_step_kwargs
265
+
266
+ def check_inputs(self, prompt, height, width, callback_steps):
267
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
268
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
269
+
270
+ if height % 8 != 0 or width % 8 != 0:
271
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
272
+
273
+ if (callback_steps is None) or (
274
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
275
+ ):
276
+ raise ValueError(
277
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
278
+ f" {type(callback_steps)}."
279
+ )
280
+
281
+ def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
282
+ shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
283
+ if isinstance(generator, list) and len(generator) != batch_size:
284
+ raise ValueError(
285
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
286
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
287
+ )
288
+
289
+ if latents is None:
290
+ rand_device = "cpu" if device.type == "mps" else device
291
+
292
+ if isinstance(generator, list):
293
+ shape = (1,) + shape[1:]
294
+ latents = [
295
+ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
296
+ for i in range(batch_size)
297
+ ]
298
+ latents = torch.cat(latents, dim=0).to(device)
299
+ else:
300
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
301
+ else:
302
+ if latents.shape != shape:
303
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
304
+ latents = latents.to(device)
305
+
306
+ # scale the initial noise by the standard deviation required by the scheduler
307
+ latents = latents * self.scheduler.init_noise_sigma
308
+ return latents
309
+
310
+ @torch.no_grad()
311
+ def __call__(
312
+ self,
313
+ prompt: Union[str, List[str]],
314
+ video_length: Optional[int],
315
+ height: Optional[int] = None,
316
+ width: Optional[int] = None,
317
+ num_inference_steps: int = 50,
318
+ guidance_scale: float = 7.5,
319
+ negative_prompt: Optional[Union[str, List[str]]] = None,
320
+ num_videos_per_prompt: Optional[int] = 1,
321
+ eta: float = 0.0,
322
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
323
+ latents: Optional[torch.FloatTensor] = None,
324
+ output_type: Optional[str] = "tensor",
325
+ return_dict: bool = True,
326
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
327
+ callback_steps: Optional[int] = 1,
328
+ **kwargs,
329
+ ):
330
+ # Default height and width to unet
331
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
332
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
333
+
334
+ # Check inputs. Raise error if not correct
335
+ self.check_inputs(prompt, height, width, callback_steps)
336
+
337
+ # Define call parameters
338
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
339
+ device = self._execution_device
340
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
341
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
342
+ # corresponds to doing no classifier free guidance.
343
+ do_classifier_free_guidance = guidance_scale > 1.0
344
+
345
+ # Encode input prompt
346
+ text_embeddings = self._encode_prompt(
347
+ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
348
+ )
349
+
350
+ # Prepare timesteps
351
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
352
+ timesteps = self.scheduler.timesteps
353
+
354
+ # Prepare latent variables
355
+ num_channels_latents = self.unet.in_channels
356
+ latents = self.prepare_latents(
357
+ batch_size * num_videos_per_prompt,
358
+ num_channels_latents,
359
+ video_length,
360
+ height,
361
+ width,
362
+ text_embeddings.dtype,
363
+ device,
364
+ generator,
365
+ latents,
366
+ )
367
+ latents_dtype = latents.dtype
368
+
369
+ # Prepare extra step kwargs.
370
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
371
+
372
+ # Denoising loop
373
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
374
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
375
+ for i, t in enumerate(timesteps):
376
+ # expand the latents if we are doing classifier free guidance
377
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
378
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
379
+
380
+ # predict the noise residual
381
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
382
+
383
+ # perform guidance
384
+ if do_classifier_free_guidance:
385
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
386
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
387
+
388
+ # compute the previous noisy sample x_t -> x_t-1
389
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
390
+
391
+ # call the callback, if provided
392
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
393
+ progress_bar.update()
394
+ if callback is not None and i % callback_steps == 0:
395
+ callback(i, t, latents)
396
+
397
+ # Post-processing
398
+ video = self.decode_latents(latents)
399
+
400
+ # Convert to tensor
401
+ if output_type == "tensor":
402
+ video = torch.from_numpy(video)
403
+
404
+ if not return_dict:
405
+ return video
406
+
407
+ return TuneAVideoPipelineOutput(videos=video)
tuneavideo/util.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import imageio
3
+ import numpy as np
4
+
5
+ import torch
6
+ import torchvision
7
+
8
+ from einops import rearrange
9
+
10
+
11
+ def save_videos_grid(
12
+ videos: torch.Tensor,
13
+ save_path: str = 'output',
14
+ path: str = 'output.gif',
15
+ rescale=False,
16
+ n_rows=4,
17
+ fps=3
18
+ ):
19
+ videos = rearrange(videos, "b c t h w -> t b c h w")
20
+ outputs = []
21
+ for x in videos:
22
+ x = torchvision.utils.make_grid(x, nrow=n_rows)
23
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
24
+ if rescale:
25
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
26
+ x = (x * 255).numpy().astype(np.uint8)
27
+ outputs.append(x)
28
+
29
+ if not os.path.exists(save_path):
30
+ os.makedirs(save_path)
31
+
32
+
33
+ imageio.mimsave(os.path.join(save_path, path), outputs, fps=fps)
34
+ return os.path.join(save_path, path)