Spaces:
Runtime error
Runtime error
File size: 10,687 Bytes
36cfe46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import os
import gradio as gr
import retrieval
import ray
from dotenv import load_dotenv
from text_generation import Client, InferenceAPIClient
# load API keys from globally-availabe .env file
SECRETS_FILEPATH = "/mnt/project/chatbotai/huggingface_cache/internal_api_keys.env"
load_dotenv(dotenv_path=SECRETS_FILEPATH, override=True)
NUM_ANSWERS_GENERATED = 3
openchat_preprompt = (
"\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
"fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
"community. I am not human, not evil and not alive, and thus have no thoughts and feelings, "
"but I am programmed to be helpful, polite, honest, and friendly. I'm really smart at answering electrical engineering questions.\n")
# LOAD MODELS
ta = retrieval.Retrieval()
context1 = None
context2 = None
context3 = None
def clip_img_search(img):
if img is None:
return []
else:
return ta.reverse_img_search(img)
def get_client(model: str):
if model == "Rallio67/joi2_20Be_instruct_alpha":
return Client(os.getenv("JOI_API_URL"))
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return Client(os.getenv("OPENCHAT_API_URL"))
return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))
def get_usernames(model: str):
"""
Returns:
(str, str, str, str): pre-prompt, username, bot name, separator
"""
if model == "OpenAssistant/oasst-sft-1-pythia-12b":
return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"
if model == "Rallio67/joi2_20Be_instruct_alpha":
return "", "User: ", "Joi: ", "\n\n"
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
return "", "User: ", "Assistant: ", "\n"
def predict(
model: str,
inputs: str,
typical_p: float,
top_p: float,
temperature: float,
top_k: int,
repetition_penalty: float,
watermark: bool,
chatbot,
history,
):
client = get_client(model)
preprompt, user_name, assistant_name, sep = get_usernames(model)
history.append(inputs)
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
partial_words = ""
if model == "OpenAssistant/oasst-sft-1-pythia-12b":
iterator = client.generate_stream(
total_inputs,
typical_p=typical_p,
truncate=1000,
watermark=watermark,
max_new_tokens=500,
)
else:
iterator = client.generate_stream(
total_inputs,
top_p=top_p if top_p < 1.0 else None,
top_k=top_k,
truncate=1000,
repetition_penalty=repetition_penalty,
watermark=watermark,
temperature=temperature,
max_new_tokens=500,
stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
)
for i, response in enumerate(iterator):
if response.token.special:
continue
partial_words = partial_words + response.token.text
if partial_words.endswith(user_name.rstrip()):
partial_words = partial_words.rstrip(user_name.rstrip())
if partial_words.endswith(assistant_name.rstrip()):
partial_words = partial_words.rstrip(assistant_name.rstrip())
if i == 0:
history.append(" " + partial_words)
elif response.token.text not in user_name:
history[-1] = partial_words
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
yield chat, history, None, None, None, []
# Pinecone context retrieval
top_context_list = ta.retrieve_contexts_from_pinecone(user_question=inputs, topk=NUM_ANSWERS_GENERATED)
yield chat, history, top_context_list[0], top_context_list[1], top_context_list[2], []
# run CLIP
images_list = ta.clip_text_to_image(inputs)
yield chat, history, top_context_list[0], top_context_list[1], top_context_list[2], images_list
def reset_textbox():
return gr.update(value="")
def radio_on_change(
value: str,
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
):
if value == "OpenAssistant/oasst-sft-1-pythia-12b":
typical_p = typical_p.update(value=0.2, visible=True)
top_p = top_p.update(visible=False)
top_k = top_k.update(visible=False)
temperature = temperature.update(visible=False)
disclaimer = disclaimer.update(visible=False)
repetition_penalty = repetition_penalty.update(visible=False)
watermark = watermark.update(False)
elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
typical_p = typical_p.update(visible=False)
top_p = top_p.update(value=0.25, visible=True)
top_k = top_k.update(value=50, visible=True)
temperature = temperature.update(value=0.6, visible=True)
repetition_penalty = repetition_penalty.update(value=1.01, visible=True)
watermark = watermark.update(False)
disclaimer = disclaimer.update(visible=True)
else:
typical_p = typical_p.update(visible=False)
top_p = top_p.update(value=0.95, visible=True)
top_k = top_k.update(value=4, visible=True)
temperature = temperature.update(value=0.5, visible=True)
repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
watermark = watermark.update(True)
disclaimer = disclaimer.update(visible=False)
return (
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
)
title = """<h1 align="center">π₯Teaching Assistant Chatbot"""
description = """
"""
openchat_disclaimer = """
<div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div>
"""
with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""") as demo:
gr.HTML(title)
with gr.Row():
with gr.Accordion("Model choices", open=False, visible=True):
model = gr.Radio(
value="OpenAssistant/oasst-sft-1-pythia-12b",
choices=[
"OpenAssistant/oasst-sft-1-pythia-12b",
# "togethercomputer/GPT-NeoXT-Chat-Base-20B",
"Rallio67/joi2_20Be_instruct_alpha",
"google/flan-t5-xxl",
"google/flan-ul2",
"bigscience/bloom",
"bigscience/bloomz",
"EleutherAI/gpt-neox-20b",
],
label="",
interactive=True,
)
# with gr.Row():
# with gr.Column():
# use_gpt3_checkbox = gr.Checkbox(label="Include GPT-3 (paid)?")
# with gr.Column():
# use_equation_checkbox = gr.Checkbox(label="Prioritize equations?")
state = gr.State([])
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbot")
inputs = gr.Textbox(placeholder="Ask an Electrical Engineering question!", label="Send a message...")
examples = gr.Examples(
examples=[
"What is a Finite State Machine?",
"How do you design a functional a Two-Bit Gray Code Counter?",
"How can we compare an 8-bit 2's complement number to the value -1 using AND, OR, and NOT?",
"What does the uninterrupted counting cycle label mean?",
],
inputs=[inputs],
outputs=[],
)
gr.Markdown("## Relevant Textbook Passages & Lecture Transcripts")
with gr.Row():
with gr.Column():
context1 = gr.Textbox(label="Context 1")
with gr.Column():
context2 = gr.Textbox(label="Context 2")
with gr.Column():
context3 = gr.Textbox(label="Context 3")
gr.Markdown("## Relevant Lecture Slides")
with gr.Row():
with gr.Column(scale=2.6):
lec_gallery = gr.Gallery(label="Lecture images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
with gr.Column(scale=1):
inp_image = gr.Image(type="pil", label="Reverse Image Search (optional)", shape=(224, 398))
inp_image.change(fn=clip_img_search, inputs=inp_image, outputs=lec_gallery, scroll_to_output=True)
disclaimer = gr.Markdown(openchat_disclaimer, visible=False)
# state = gr.State([])
with gr.Row():
with gr.Accordion("Parameters", open=False, visible=True):
typical_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.2,
step=0.05,
interactive=True,
label="Typical P mass",
)
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.25,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
visible=False,
)
temperature = gr.Slider(
minimum=-0,
maximum=5.0,
value=0.6,
step=0.1,
interactive=True,
label="Temperature",
visible=False,
)
top_k = gr.Slider(
minimum=1,
maximum=50,
value=50,
step=1,
interactive=True,
label="Top-k",
visible=False,
)
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=3.0,
value=1.03,
step=0.01,
interactive=True,
label="Repetition Penalty",
visible=False,
)
watermark = gr.Checkbox(value=False, label="Text watermarking")
model.change(
lambda value: radio_on_change(
value,
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
),
inputs=model,
outputs=[
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
],
)
inputs.submit(
predict,
[
model,
inputs,
typical_p,
top_p,
temperature,
top_k,
repetition_penalty,
watermark,
chatbot,
state,
],
[chatbot, state, context1, context2, context3, lec_gallery],
)
inputs.submit(reset_textbox, [], [inputs])
gr.Markdown(description)
demo.queue(concurrency_count=16).launch(share=True, debug=True)
|