|
import gradio as gr |
|
import os |
|
import json |
|
import requests |
|
|
|
|
|
API_URL = "https://api.openai.com/v1/chat/completions" |
|
OPENAI_API_KEY= os.environ["HF_TOKEN"] |
|
|
|
|
|
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): |
|
|
|
|
|
payload = { |
|
"model": "gpt-3.5-turbo", |
|
"messages": [{"role": "user", "content": f"{inputs}"}], |
|
"temperature" : 1.0, |
|
"top_p":1.0, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
|
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OPENAI_API_KEY}" |
|
} |
|
|
|
|
|
print(f"chat_counter - {chat_counter}") |
|
if chat_counter != 0 : |
|
messages=[] |
|
for data in chatbot: |
|
temp1 = {} |
|
temp1["role"] = "user" |
|
temp1["content"] = data[0] |
|
temp2 = {} |
|
temp2["role"] = "assistant" |
|
temp2["content"] = data[1] |
|
messages.append(temp1) |
|
messages.append(temp2) |
|
temp3 = {} |
|
temp3["role"] = "user" |
|
temp3["content"] = inputs |
|
messages.append(temp3) |
|
payload = { |
|
"model": "gpt-3.5-turbo", |
|
"messages": messages, |
|
"temperature" : temperature, |
|
"top_p": top_p, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
chat_counter+=1 |
|
|
|
|
|
history.append(inputs) |
|
print(f"payload is - {payload}") |
|
response = requests.post(API_URL, headers=headers, json=payload, stream=True) |
|
token_counter = 0 |
|
partial_words = "" |
|
|
|
|
|
counter=0 |
|
for chunk in response.iter_lines(): |
|
if counter == 0: |
|
counter+=1 |
|
continue |
|
if chunk.decode() : |
|
chunk = chunk.decode() |
|
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: |
|
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] |
|
if token_counter == 0: |
|
history.append(" " + partial_words) |
|
else: |
|
history[-1] = partial_words |
|
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] |
|
token_counter+=1 |
|
yield chat, history, chat_counter |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value='') |
|
|
|
|
|
|
|
|
|
|
|
def list_files(file_path): |
|
import os |
|
icon_csv = "📄 " |
|
icon_txt = "📑 " |
|
current_directory = os.getcwd() |
|
file_list = [] |
|
for filename in os.listdir(current_directory): |
|
if filename.endswith(".csv"): |
|
file_list.append(icon_csv + filename) |
|
elif filename.endswith(".txt"): |
|
file_list.append(icon_txt + filename) |
|
if file_list: |
|
return "\n".join(file_list) |
|
else: |
|
return "No .csv or .txt files found in the current directory." |
|
|
|
|
|
def read_file(file_path): |
|
try: |
|
with open(file_path, "r") as file: |
|
contents = file.read() |
|
return f"{contents}" |
|
|
|
except FileNotFoundError: |
|
return "File not found." |
|
|
|
|
|
def delete_file(file_path): |
|
try: |
|
import os |
|
os.remove(file_path) |
|
return f"{file_path} has been deleted." |
|
except FileNotFoundError: |
|
return "File not found." |
|
|
|
|
|
def write_file(file_path, content): |
|
try: |
|
with open(file_path, "w") as file: |
|
file.write(content) |
|
return f"Successfully written to {file_path}." |
|
except: |
|
return "Error occurred while writing to file." |
|
|
|
|
|
def append_file(file_path, content): |
|
try: |
|
with open(file_path, "a") as file: |
|
file.write(content) |
|
return f"Successfully appended to {file_path}." |
|
except: |
|
return "Error occurred while appending to file." |
|
|
|
|
|
title = """<h1 align="center">Memory Chat Story Generator ChatGPT</h1>""" |
|
description = """ |
|
## ChatGPT Datasets 📚 |
|
- WebText |
|
- Common Crawl |
|
- BooksCorpus |
|
- English Wikipedia |
|
- Toronto Books Corpus |
|
- OpenWebText |
|
## ChatGPT Datasets - Details 📚 |
|
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2. |
|
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext) |
|
- **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3. |
|
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al. |
|
- **BooksCorpus:** A dataset of over 11,000 books from a variety of genres. |
|
- [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al. |
|
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017. |
|
- [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search |
|
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto. |
|
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze. |
|
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3. |
|
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al. |
|
""" |
|
|
|
|
|
with gr.Blocks(css = """#col_container {width: 1400px; margin-left: auto; margin-right: auto;} #chatbot {height: 600px; overflow: auto;}""") as demo: |
|
gr.HTML(title) |
|
with gr.Column(elem_id = "col_container"): |
|
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") |
|
chatbot = gr.Chatbot(elem_id='chatbot') |
|
state = gr.State([]) |
|
b1 = gr.Button() |
|
with gr.Accordion("Parameters", open=False): |
|
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) |
|
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) |
|
chat_counter = gr.Number(value=0, visible=True, precision=0) |
|
|
|
|
|
|
|
fileName = gr.Textbox(label="Filename") |
|
fileContent = gr.TextArea(label="File Content") |
|
completedMessage = gr.Textbox(label="Completed") |
|
label = gr.Label() |
|
with gr.Row(): |
|
listFiles = gr.Button("📄 List File(s)") |
|
readFile = gr.Button("📖 Read File") |
|
saveFile = gr.Button("💾 Save File") |
|
deleteFile = gr.Button("🗑️ Delete File") |
|
appendFile = gr.Button("➕ Append File") |
|
listFiles.click(list_files, inputs=fileName, outputs=fileContent) |
|
readFile.click(read_file, inputs=fileName, outputs=fileContent) |
|
saveFile.click(write_file, inputs=[fileName, fileContent], outputs=completedMessage) |
|
deleteFile.click(delete_file, inputs=fileName, outputs=completedMessage) |
|
appendFile.click(append_file, inputs=[fileName, fileContent], outputs=completedMessage ) |
|
|
|
|
|
inputs.submit(predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter]) |
|
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter]) |
|
b1.click(reset_textbox, [], [inputs]) |
|
inputs.submit(reset_textbox, [], [inputs]) |
|
gr.Markdown(description) |
|
|
|
demo.queue().launch(debug=True) |