Spaces:
Runtime error
Runtime error
File size: 12,013 Bytes
ada4657 a0001dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import gradio as gr
from huggingface_hub import from_pretrained_keras
from PIL import Image
import io
import matplotlib.pyplot as plt
import os
import re
import zipfile
import numpy as np
import tensorflow as tf
from tensorflow import keras
coco_image = []
coco_dir = 'coco/images/test2017/'
for idx, images in enumerate(os.listdir(coco_dir)):
image = os.path.join(coco_dir, images)
if os.path.isfile(image) and idx < 10:
coco_image.append(image)
class AnchorBox:
"""Generates anchor boxes.
This class has operations to generate anchor boxes for feature maps at
strides `[8, 16, 32, 64, 128]`. Where each anchor each box is of the
format `[x, y, width, height]`.
Attributes:
aspect_ratios: A list of float values representing the aspect ratios of
the anchor boxes at each location on the feature map
scales: A list of float values representing the scale of the anchor boxes
at each location on the feature map.
num_anchors: The number of anchor boxes at each location on feature map
areas: A list of float values representing the areas of the anchor
boxes for each feature map in the feature pyramid.
strides: A list of float value representing the strides for each feature
map in the feature pyramid.
"""
def __init__(self):
self.aspect_ratios = [0.5, 1.0, 2.0]
self.scales = [2 ** x for x in [0, 1 / 3, 2 / 3]]
self._num_anchors = len(self.aspect_ratios) * len(self.scales)
self._strides = [2 ** i for i in range(3, 8)]
self._areas = [x ** 2 for x in [32.0, 64.0, 128.0, 256.0, 512.0]]
self._anchor_dims = self._compute_dims()
def _compute_dims(self):
"""Computes anchor box dimensions for all ratios and scales at all levels
of the feature pyramid.
"""
anchor_dims_all = []
for area in self._areas:
anchor_dims = []
for ratio in self.aspect_ratios:
anchor_height = tf.math.sqrt(area / ratio)
anchor_width = area / anchor_height
dims = tf.reshape(
tf.stack([anchor_width, anchor_height], axis=-1), [1, 1, 2]
)
for scale in self.scales:
anchor_dims.append(scale * dims)
anchor_dims_all.append(tf.stack(anchor_dims, axis=-2))
return anchor_dims_all
def _get_anchors(self, feature_height, feature_width, level):
"""Generates anchor boxes for a given feature map size and level
Arguments:
feature_height: An integer representing the height of the feature map.
feature_width: An integer representing the width of the feature map.
level: An integer representing the level of the feature map in the
feature pyramid.
Returns:
anchor boxes with the shape
`(feature_height * feature_width * num_anchors, 4)`
"""
rx = tf.range(feature_width, dtype=tf.float32) + 0.5
ry = tf.range(feature_height, dtype=tf.float32) + 0.5
centers = tf.stack(tf.meshgrid(rx, ry), axis=-1) * self._strides[level - 3]
centers = tf.expand_dims(centers, axis=-2)
centers = tf.tile(centers, [1, 1, self._num_anchors, 1])
dims = tf.tile(
self._anchor_dims[level - 3], [feature_height, feature_width, 1, 1]
)
anchors = tf.concat([centers, dims], axis=-1)
return tf.reshape(
anchors, [feature_height * feature_width * self._num_anchors, 4]
)
def get_anchors(self, image_height, image_width):
"""Generates anchor boxes for all the feature maps of the feature pyramid.
Arguments:
image_height: Height of the input image.
image_width: Width of the input image.
Returns:
anchor boxes for all the feature maps, stacked as a single tensor
with shape `(total_anchors, 4)`
"""
anchors = [
self._get_anchors(
tf.math.ceil(image_height / 2 ** i),
tf.math.ceil(image_width / 2 ** i),
i,
)
for i in range(3, 8)
]
return tf.concat(anchors, axis=0)
class DecodePredictions(tf.keras.layers.Layer):
"""A Keras layer that decodes predictions of the RetinaNet model.
Attributes:
num_classes: Number of classes in the dataset
confidence_threshold: Minimum class probability, below which detections
are pruned.
nms_iou_threshold: IOU threshold for the NMS operation
max_detections_per_class: Maximum number of detections to retain per
class.
max_detections: Maximum number of detections to retain across all
classes.
box_variance: The scaling factors used to scale the bounding box
predictions.
"""
def __init__(
self,
num_classes=80,
confidence_threshold=0.05,
nms_iou_threshold=0.5,
max_detections_per_class=100,
max_detections=100,
box_variance=[0.1, 0.1, 0.2, 0.2],
**kwargs
):
super(DecodePredictions, self).__init__(**kwargs)
self.num_classes = num_classes
self.confidence_threshold = confidence_threshold
self.nms_iou_threshold = nms_iou_threshold
self.max_detections_per_class = max_detections_per_class
self.max_detections = max_detections
self._anchor_box = AnchorBox()
self._box_variance = tf.convert_to_tensor(
[0.1, 0.1, 0.2, 0.2], dtype=tf.float32
)
def _decode_box_predictions(self, anchor_boxes, box_predictions):
boxes = box_predictions * self._box_variance
boxes = tf.concat(
[
boxes[:, :, :2] * anchor_boxes[:, :, 2:] + anchor_boxes[:, :, :2],
tf.math.exp(boxes[:, :, 2:]) * anchor_boxes[:, :, 2:],
],
axis=-1,
)
boxes_transformed = convert_to_corners(boxes)
return boxes_transformed
def call(self, images, predictions):
image_shape = tf.cast(tf.shape(images), dtype=tf.float32)
anchor_boxes = self._anchor_box.get_anchors(image_shape[1], image_shape[2])
box_predictions = predictions[:, :, :4]
cls_predictions = tf.nn.sigmoid(predictions[:, :, 4:])
boxes = self._decode_box_predictions(anchor_boxes[None, ...], box_predictions)
return tf.image.combined_non_max_suppression(
tf.expand_dims(boxes, axis=2),
cls_predictions,
self.max_detections_per_class,
self.max_detections,
self.nms_iou_threshold,
self.confidence_threshold,
clip_boxes=False,
)
def convert_to_corners(boxes):
"""Changes the box format to corner coordinates
Arguments:
boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)`
representing bounding boxes where each box is of the format
`[x, y, width, height]`.
Returns:
converted boxes with shape same as that of boxes.
"""
return tf.concat(
[boxes[..., :2] - boxes[..., 2:] / 2.0, boxes[..., :2] + boxes[..., 2:] / 2.0],
axis=-1,
)
def resize_and_pad_image(
image, min_side=800.0, max_side=1333.0, jitter=[640, 1024], stride=128.0
):
"""Resizes and pads image while preserving aspect ratio.
1. Resizes images so that the shorter side is equal to `min_side`
2. If the longer side is greater than `max_side`, then resize the image
with longer side equal to `max_side`
3. Pad with zeros on right and bottom to make the image shape divisible by
`stride`
Arguments:
image: A 3-D tensor of shape `(height, width, channels)` representing an
image.
min_side: The shorter side of the image is resized to this value, if
`jitter` is set to None.
max_side: If the longer side of the image exceeds this value after
resizing, the image is resized such that the longer side now equals to
this value.
jitter: A list of floats containing minimum and maximum size for scale
jittering. If available, the shorter side of the image will be
resized to a random value in this range.
stride: The stride of the smallest feature map in the feature pyramid.
Can be calculated using `image_size / feature_map_size`.
Returns:
image: Resized and padded image.
image_shape: Shape of the image before padding.
ratio: The scaling factor used to resize the image
"""
image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32)
if jitter is not None:
min_side = tf.random.uniform((), jitter[0], jitter[1], dtype=tf.float32)
ratio = min_side / tf.reduce_min(image_shape)
if ratio * tf.reduce_max(image_shape) > max_side:
ratio = max_side / tf.reduce_max(image_shape)
image_shape = ratio * image_shape
image = tf.image.resize(image, tf.cast(image_shape, dtype=tf.int32))
padded_image_shape = tf.cast(
tf.math.ceil(image_shape / stride) * stride, dtype=tf.int32
)
image = tf.image.pad_to_bounding_box(
image, 0, 0, padded_image_shape[0], padded_image_shape[1]
)
return image, image_shape, ratio
def visualize_detections(
image, boxes, classes, scores, figsize=(7, 7), linewidth=1, color=[0, 0, 1]
):
"""Visualize Detections"""
image = np.array(image, dtype=np.uint8)
plt.figure(figsize=figsize)
plt.axis("off")
plt.imshow(image)
ax = plt.gca()
for box, _cls, score in zip(boxes, classes, scores):
text = "{}: {:.2f}".format(_cls, score)
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
patch = plt.Rectangle(
[x1, y1], w, h, fill=False, edgecolor=color, linewidth=linewidth
)
ax.add_patch(patch)
ax.text(
x1,
y1,
text,
bbox={"facecolor": color, "alpha": 0.4},
clip_box=ax.clipbox,
clip_on=True,
)
plt.show()
return ax
def prepare_image(image):
image, _, ratio = resize_and_pad_image(image, jitter=None)
image = tf.keras.applications.resnet.preprocess_input(image)
return tf.expand_dims(image, axis=0), ratio
model = from_pretrained_keras("keras-io/Object-Detection-RetinaNet")
img_input = tf.keras.Input(shape=[None, None, 3], name="image")
predictions = model(img_input, training=False)
detections = DecodePredictions(confidence_threshold=0.5)(img_input, predictions)
inference_model = tf.keras.Model(inputs=img_input, outputs=detections)
def predict(image):
input_image, ratio = prepare_image(image)
detections = inference_model.predict(input_image)
num_detections = detections.valid_detections[0]
class_names = [
int2str(int(x)) for x in detections.nmsed_classes[0][:num_detections]
]
img_buf = io.BytesIO()
ax = visualize_detections(
image,
detections.nmsed_boxes[0][:num_detections] / ratio,
class_names,
detections.nmsed_scores[0][:num_detections],
)
ax.figure.savefig(img_buf)
img_buf.seek(0)
img = Image.open(img_buf)
return img
# Input
input = gr.inputs.Image(image_mode="RGB", type="numpy", label="Enter Object Image")
# Output
output = gr.outputs.Image(type="pil", label="Detected Objects with Class Category")
title = "Object Detection With RetinaNet"
description = "Upload an Image or take one from examples to localize objects present in an image, and at the same time, classify them into different categories"
gr.Interface(fn=predict, inputs = input, outputs = output, examples=coco_image, allow_flagging=False, analytics_enabled=False, title=title, description=description, article="Space By: <u><a href="https://github.com/robotjellyzone"><b>Kavya Bisht</b></a></u> \n Based on notebook <a href=""><b>https://keras.io/examples/vision/retinanet/</b></a>").launch(enable_queue=True, debug=True) |