File size: 12,013 Bytes
ada4657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0001dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gradio as gr
from huggingface_hub import from_pretrained_keras
from PIL import Image
import io
import matplotlib.pyplot as plt
import os
import re
import zipfile
import numpy as np
import tensorflow as tf
from tensorflow import keras

coco_image = []
coco_dir = 'coco/images/test2017/'
for idx, images in enumerate(os.listdir(coco_dir)):
  image = os.path.join(coco_dir, images)
  if os.path.isfile(image) and idx < 10:
    coco_image.append(image)

class AnchorBox:
    """Generates anchor boxes.

    This class has operations to generate anchor boxes for feature maps at
    strides `[8, 16, 32, 64, 128]`. Where each anchor each box is of the
    format `[x, y, width, height]`.

    Attributes:
      aspect_ratios: A list of float values representing the aspect ratios of
        the anchor boxes at each location on the feature map
      scales: A list of float values representing the scale of the anchor boxes
        at each location on the feature map.
      num_anchors: The number of anchor boxes at each location on feature map
      areas: A list of float values representing the areas of the anchor
        boxes for each feature map in the feature pyramid.
      strides: A list of float value representing the strides for each feature
        map in the feature pyramid.
    """

    def __init__(self):
        self.aspect_ratios = [0.5, 1.0, 2.0]
        self.scales = [2 ** x for x in [0, 1 / 3, 2 / 3]]

        self._num_anchors = len(self.aspect_ratios) * len(self.scales)
        self._strides = [2 ** i for i in range(3, 8)]
        self._areas = [x ** 2 for x in [32.0, 64.0, 128.0, 256.0, 512.0]]
        self._anchor_dims = self._compute_dims()

    def _compute_dims(self):
        """Computes anchor box dimensions for all ratios and scales at all levels
        of the feature pyramid.
        """
        anchor_dims_all = []
        for area in self._areas:
            anchor_dims = []
            for ratio in self.aspect_ratios:
                anchor_height = tf.math.sqrt(area / ratio)
                anchor_width = area / anchor_height
                dims = tf.reshape(
                    tf.stack([anchor_width, anchor_height], axis=-1), [1, 1, 2]
                )
                for scale in self.scales:
                    anchor_dims.append(scale * dims)
            anchor_dims_all.append(tf.stack(anchor_dims, axis=-2))
        return anchor_dims_all

    def _get_anchors(self, feature_height, feature_width, level):
        """Generates anchor boxes for a given feature map size and level

        Arguments:
          feature_height: An integer representing the height of the feature map.
          feature_width: An integer representing the width of the feature map.
          level: An integer representing the level of the feature map in the
            feature pyramid.

        Returns:
          anchor boxes with the shape
          `(feature_height * feature_width * num_anchors, 4)`
        """
        rx = tf.range(feature_width, dtype=tf.float32) + 0.5
        ry = tf.range(feature_height, dtype=tf.float32) + 0.5
        centers = tf.stack(tf.meshgrid(rx, ry), axis=-1) * self._strides[level - 3]
        centers = tf.expand_dims(centers, axis=-2)
        centers = tf.tile(centers, [1, 1, self._num_anchors, 1])
        dims = tf.tile(
            self._anchor_dims[level - 3], [feature_height, feature_width, 1, 1]
        )
        anchors = tf.concat([centers, dims], axis=-1)
        return tf.reshape(
            anchors, [feature_height * feature_width * self._num_anchors, 4]
        )

    def get_anchors(self, image_height, image_width):
        """Generates anchor boxes for all the feature maps of the feature pyramid.

        Arguments:
          image_height: Height of the input image.
          image_width: Width of the input image.

        Returns:
          anchor boxes for all the feature maps, stacked as a single tensor
            with shape `(total_anchors, 4)`
        """
        anchors = [
            self._get_anchors(
                tf.math.ceil(image_height / 2 ** i),
                tf.math.ceil(image_width / 2 ** i),
                i,
            )
            for i in range(3, 8)
        ]
        return tf.concat(anchors, axis=0)

class DecodePredictions(tf.keras.layers.Layer):
    """A Keras layer that decodes predictions of the RetinaNet model.

    Attributes:
      num_classes: Number of classes in the dataset
      confidence_threshold: Minimum class probability, below which detections
        are pruned.
      nms_iou_threshold: IOU threshold for the NMS operation
      max_detections_per_class: Maximum number of detections to retain per
       class.
      max_detections: Maximum number of detections to retain across all
        classes.
      box_variance: The scaling factors used to scale the bounding box
        predictions.
    """

    def __init__(
        self,
        num_classes=80,
        confidence_threshold=0.05,
        nms_iou_threshold=0.5,
        max_detections_per_class=100,
        max_detections=100,
        box_variance=[0.1, 0.1, 0.2, 0.2],
        **kwargs
    ):
        super(DecodePredictions, self).__init__(**kwargs)
        self.num_classes = num_classes
        self.confidence_threshold = confidence_threshold
        self.nms_iou_threshold = nms_iou_threshold
        self.max_detections_per_class = max_detections_per_class
        self.max_detections = max_detections

        self._anchor_box = AnchorBox()
        self._box_variance = tf.convert_to_tensor(
            [0.1, 0.1, 0.2, 0.2], dtype=tf.float32
        )

    def _decode_box_predictions(self, anchor_boxes, box_predictions):
        boxes = box_predictions * self._box_variance
        boxes = tf.concat(
            [
                boxes[:, :, :2] * anchor_boxes[:, :, 2:] + anchor_boxes[:, :, :2],
                tf.math.exp(boxes[:, :, 2:]) * anchor_boxes[:, :, 2:],
            ],
            axis=-1,
        )
        boxes_transformed = convert_to_corners(boxes)
        return boxes_transformed

    def call(self, images, predictions):
        image_shape = tf.cast(tf.shape(images), dtype=tf.float32)
        anchor_boxes = self._anchor_box.get_anchors(image_shape[1], image_shape[2])
        box_predictions = predictions[:, :, :4]
        cls_predictions = tf.nn.sigmoid(predictions[:, :, 4:])
        boxes = self._decode_box_predictions(anchor_boxes[None, ...], box_predictions)

        return tf.image.combined_non_max_suppression(
            tf.expand_dims(boxes, axis=2),
            cls_predictions,
            self.max_detections_per_class,
            self.max_detections,
            self.nms_iou_threshold,
            self.confidence_threshold,
            clip_boxes=False,
        )

def convert_to_corners(boxes):
    """Changes the box format to corner coordinates

    Arguments:
      boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)`
        representing bounding boxes where each box is of the format
        `[x, y, width, height]`.

    Returns:
      converted boxes with shape same as that of boxes.
    """
    return tf.concat(
        [boxes[..., :2] - boxes[..., 2:] / 2.0, boxes[..., :2] + boxes[..., 2:] / 2.0],
        axis=-1,
    )

def resize_and_pad_image(
    image, min_side=800.0, max_side=1333.0, jitter=[640, 1024], stride=128.0
):
    """Resizes and pads image while preserving aspect ratio.

    1. Resizes images so that the shorter side is equal to `min_side`
    2. If the longer side is greater than `max_side`, then resize the image
      with longer side equal to `max_side`
    3. Pad with zeros on right and bottom to make the image shape divisible by
    `stride`

    Arguments:
      image: A 3-D tensor of shape `(height, width, channels)` representing an
        image.
      min_side: The shorter side of the image is resized to this value, if
        `jitter` is set to None.
      max_side: If the longer side of the image exceeds this value after
        resizing, the image is resized such that the longer side now equals to
        this value.
      jitter: A list of floats containing minimum and maximum size for scale
        jittering. If available, the shorter side of the image will be
        resized to a random value in this range.
      stride: The stride of the smallest feature map in the feature pyramid.
        Can be calculated using `image_size / feature_map_size`.

    Returns:
      image: Resized and padded image.
      image_shape: Shape of the image before padding.
      ratio: The scaling factor used to resize the image
    """
    image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32)
    if jitter is not None:
        min_side = tf.random.uniform((), jitter[0], jitter[1], dtype=tf.float32)
    ratio = min_side / tf.reduce_min(image_shape)
    if ratio * tf.reduce_max(image_shape) > max_side:
        ratio = max_side / tf.reduce_max(image_shape)
    image_shape = ratio * image_shape
    image = tf.image.resize(image, tf.cast(image_shape, dtype=tf.int32))
    padded_image_shape = tf.cast(
        tf.math.ceil(image_shape / stride) * stride, dtype=tf.int32
    )
    image = tf.image.pad_to_bounding_box(
        image, 0, 0, padded_image_shape[0], padded_image_shape[1]
    )
    return image, image_shape, ratio

def visualize_detections(
    image, boxes, classes, scores, figsize=(7, 7), linewidth=1, color=[0, 0, 1]
):
    """Visualize Detections"""
    image = np.array(image, dtype=np.uint8)
    plt.figure(figsize=figsize)
    plt.axis("off")
    plt.imshow(image)
    ax = plt.gca()
    for box, _cls, score in zip(boxes, classes, scores):
        text = "{}: {:.2f}".format(_cls, score)
        x1, y1, x2, y2 = box
        w, h = x2 - x1, y2 - y1
        patch = plt.Rectangle(
            [x1, y1], w, h, fill=False, edgecolor=color, linewidth=linewidth
        )
        ax.add_patch(patch)
        ax.text(
            x1,
            y1,
            text,
            bbox={"facecolor": color, "alpha": 0.4},
            clip_box=ax.clipbox,
            clip_on=True,
        )
    plt.show()
    return ax

def prepare_image(image):
    image, _, ratio = resize_and_pad_image(image, jitter=None)
    image = tf.keras.applications.resnet.preprocess_input(image)
    return tf.expand_dims(image, axis=0), ratio

model = from_pretrained_keras("keras-io/Object-Detection-RetinaNet")
img_input = tf.keras.Input(shape=[None, None, 3], name="image")
predictions = model(img_input, training=False)
detections = DecodePredictions(confidence_threshold=0.5)(img_input, predictions)
inference_model = tf.keras.Model(inputs=img_input, outputs=detections)

def predict(image):
  input_image, ratio = prepare_image(image)
  detections = inference_model.predict(input_image)
  num_detections = detections.valid_detections[0]
  class_names = [
                 int2str(int(x)) for x in detections.nmsed_classes[0][:num_detections]
                 ]
  img_buf = io.BytesIO()
  ax = visualize_detections(
        image,
        detections.nmsed_boxes[0][:num_detections] / ratio,
        class_names,
        detections.nmsed_scores[0][:num_detections],
  )
  ax.figure.savefig(img_buf)
  img_buf.seek(0)
  img = Image.open(img_buf)
  return img
  
# Input
input = gr.inputs.Image(image_mode="RGB", type="numpy", label="Enter Object Image")

# Output
output = gr.outputs.Image(type="pil", label="Detected Objects with Class Category")

title = "Object Detection With RetinaNet"
description = "Upload an Image or take one from examples to localize objects present in an image, and at the same time, classify them into different categories"

gr.Interface(fn=predict, inputs = input, outputs = output, examples=coco_image, allow_flagging=False, analytics_enabled=False, title=title, description=description, article="Space By: <u><a href="https://github.com/robotjellyzone"><b>Kavya Bisht</b></a></u> \n Based on notebook <a href=""><b>https://keras.io/examples/vision/retinanet/</b></a>").launch(enable_queue=True, debug=True)