IMvision12 commited on
Commit
97ef017
·
1 Parent(s): 826c17e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -17
app.py CHANGED
@@ -18,20 +18,19 @@ article = """
18
  </p>
19
  """
20
 
21
- def Predict(model, num_images):
22
- random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
23
- preds = model(random_latent_vectors)
24
- num = ceil(sqrt(num_images))
25
- images = np.zeros((28*num, 28*num), dtype=float)
26
- n = 0
27
- for i in range(num):
28
- for j in range(num):
29
- if n == num_images:
30
- break
31
- images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = preds[n, :, :, 0]
32
- n += 1
33
- return images
34
-
35
 
36
  def inference(num_images, select: str):
37
  if select == 'fmnist':
@@ -39,16 +38,15 @@ def inference(num_images, select: str):
39
  else:
40
  result = create_digit_samples(model1, num_images)
41
  return result
42
-
43
- examples = [[5],[8],[2],[3]]
44
  inputs = [gr.inputs.Number(label="number of images"), gr.inputs.Radio(['fmnist', 'mnist'])]
45
  outputs = gr.outputs.Image(label="Output Image")
 
46
 
47
  interface = gr.Interface(
48
  fn = inference,
49
  inputs = inputs,
50
  outputs = outputs,
51
- examples = examples,
52
  description = description,
53
  title = title,
54
  article = article
 
18
  </p>
19
  """
20
 
21
+ def create_digit_samples(model, num_images):
22
+ random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
23
+ predictions = model.predict(random_latent_vectors)
24
+ num = ceil(sqrt(num_images))
25
+ images = np.zeros((28*num, 28*num), dtype=float)
26
+ n = 0
27
+ for i in range(num):
28
+ for j in range(num):
29
+ if n == num_images:
30
+ break
31
+ images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0]
32
+ n += 1
33
+ return images
 
34
 
35
  def inference(num_images, select: str):
36
  if select == 'fmnist':
 
38
  else:
39
  result = create_digit_samples(model1, num_images)
40
  return result
41
+
 
42
  inputs = [gr.inputs.Number(label="number of images"), gr.inputs.Radio(['fmnist', 'mnist'])]
43
  outputs = gr.outputs.Image(label="Output Image")
44
+
45
 
46
  interface = gr.Interface(
47
  fn = inference,
48
  inputs = inputs,
49
  outputs = outputs,
 
50
  description = description,
51
  title = title,
52
  article = article