Spaces:
Build error
Build error
File size: 1,557 Bytes
dcdaaec f306d19 a134b00 557899a 8e5beee b30b5d8 c4556a0 ebb0ce9 39f1739 f306d19 8e5beee 03c7df4 8e5beee f9f0b73 f306d19 8e5beee f306d19 8e5beee b30b5d8 2f8466b 0f3065b 5826562 9f584e5 8e5beee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from gradio import mix
import tensorflow as tf
import numpy as np
import torch
from keras.preprocessing.sequence import pad_sequences
import pickle
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("keras-io/text-generation-miniature-gpt")
def tokenize_data(text):
# Tokenize the review body
input_ = str(text) + ' </s>'
max_len = 80
# tokenize inputs
tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt')
inputs={"input_ids": tokenized_inputs['input_ids'],
"attention_mask": tokenized_inputs['attention_mask']}
return inputs
def generate_answers(text):
sequence_test = tokenizer.texts_to_sequences([text])
padded_test = pad_sequences(sequence_test, maxlen= 80, padding='post')
predictions,_ = model.predict(padded_test)
results = np.argmax(predictions, axis=1)[0]
answer = tokenizer.sequences_to_texts([results] )
answertoString = ' '.join([str(elem) for elem in answer])
return answertoString
examples = [["Once upon a time, "], ["In a galaxy far far away"]]
title = "Text Generation with Miniature GPT"
description = "Gradio Demo for a miniature with GPT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
iface = gr.Interface(fn=generate_answers, title = title, description=description, inputs=['text'], outputs=["text"], examples=examples)
iface.launch(inline=False, share=True) |